A Demonstration of the $\mathrm{AT}_{\mathrm{E}} \mathrm{X} 2_{\mathcal{E}}$ Class File for the Journal of Mathematical Study

Mike Wong ${ }^{1}$, Chris Lai ${ }^{1, *}$ and John Smith ${ }^{2}$
${ }^{1}$ Address 1
${ }^{2}$ Address 2

Abstract

This paper describes the use of the $\mathrm{LA}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon} \mathrm{jms}$. cls class file for setting papers for the Journal of Mathematical Study. AMS subject classifications: 52B10, 65D18, 68U05, 68U07 Chinese Library Classifications: O175.27

Key words: $\mathrm{ET}_{\mathrm{E}} \mathrm{X} 2 \varepsilon$

1 Introduction

This paper is described how to use the jms.cls class file for publication in the Journal of Mathematical Study. The jms.cls class file preserves much of the standard $\mathrm{LT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}$ interface so that authors can easily convert their standard $\mathrm{LT}_{\mathrm{E}} 2_{\varepsilon}$ article style files to the jms style.

2 Preparation of Manuscript

The Title Page should contain the article title, authors' names and complete affiliations, and email addresses of all authors. The Abstract should provide a brief summary of the main findings of the paper.

References should be cited in the text by a number in square brackets. Literature cited should appear on a separate page at the end of the article and should be styled and punctuated using standard abbreviations for journals (see Thomson ISI list of journal abbreviations). For unpublished lectures of symposia, include title of paper, name of sponsoring society in full, and date. Give titles of unpublished reports with "(unpublished)" following the reference. Only articles that have been published or are in press

[^0]should be included in the references. Unpublished results or personal communications should be cited as such in the text. Please note the sample at the end of this paper.

Equations should be typewritten whenever possible and the number placed in parentheses at the right margin. Reference to equations should use the form "Eq. (2.1)" or simply "(2.1)." Superscripts and subscripts should be typed or handwritten clearly above and below the line, respectively.

Figures should be in a finished form suitable for publication. Number figures consecutively with Arabic numerals. Lettering on drawings should be of professional quality or generated by high-resolution computer graphics and must be large enough to withstand appropriate reduction for publication. For example, if you use MATLAB to do figure plots , axis labels should be at least point 18. Title should be 24 points or above. Tick marks labels better have 14 points or above. Line width should be 2 (or above).

Illustrations in color in most cases can be accepted only if the authors defray the cost. At the Editor's discretion a limited number of color figures each year of special interest will be published at no cost to the author.

3 Mathematical Formulas (Examples)

In [1] it was claimed that there always exists a minimizer; however, the statement of Theorem 2.1 is incomplete. In this note we present the full statement, with a detailed proof.

The theorem stated in [1] holds as long as the number of electrons is below a certain critical value. The correct statement for the theorem in [1] is:

Theorem 3.1 (Existence of minimizers). Given $v \in C^{\infty}(\bar{\Omega})$, and $K_{W T} \in L_{l o c}^{2}\left(\mathbb{R}^{3}\right)$, consider the problem

$$
\begin{equation*}
\inf _{u \in \mathcal{B}} F[u], \tag{3.1}
\end{equation*}
$$

where F and \mathcal{B} are

$$
\begin{align*}
F[u]= & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{7 C_{T F} N^{2 / 3}}{25} \int_{\Omega} u^{10 / 3}+\frac{4 C_{T F} N^{2 / 3}}{5} \int_{\Omega}|u|^{5 / 3}\left(K_{W T} *|u|^{5 / 3}\right) \\
& +\frac{N}{2} \int_{\Omega} u^{2}\left(\frac{1}{|\mathbf{x}|} * u^{2}\right)-\frac{3}{4}\left(\frac{3 N}{\pi}\right)^{1 / 3} \int_{\Omega} u^{8 / 3} \\
& +\int_{\Omega} u^{2} \varepsilon\left(N u^{2}\right)+\int_{\Omega} v(\mathbf{x}) u^{2}(\mathbf{x}) d \mathbf{x}, \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{B}=\left\{u \in H_{0}^{1}(\Omega) \mid u \geq 0, \int_{\Omega} u^{2}=1\right\} . \tag{3.3}
\end{equation*}
$$

In (3.2), the set Ω is open and bounded, and star-shaped with respect to 0 ; ε is defined as

$$
\varepsilon\left(N u^{2}\right)=\left\{\begin{array}{l}
\frac{\gamma}{1+\beta_{1} \sqrt{r_{s}}+\beta_{2} r_{s}}, \quad r_{s} \geq 1, \tag{3.4}\\
A \ln \left(r_{s}\right)+B+C r_{s} \ln \left(r_{s}\right)+D r_{s}, \quad r_{s} \leq 1,
\end{array}\right.
$$

where $r_{s}=\left(4 \pi N u^{2} / 3\right)^{-\frac{1}{3}}$; the parameters used are $\gamma=-0.1423, \beta_{1}=1.0529, \beta_{2}=0.3334$, $A=0.0311, B=-0.048$, and $C=2.019151940622 \times 10^{-3}$ and $D=-1.163206637891 \times 10^{-2}$ are chosen so that $\varepsilon(r)$ and $\varepsilon^{\prime}(r)$ are continuous at $r=1$.

Then, there exists $N_{0}>0$ such that:

1. If $N<N_{0}$ then $\exists u^{*} \in \mathcal{B}$ such that

$$
\begin{equation*}
F\left[u^{*}\right]=\min _{u \in \mathcal{B}} F[u] . \tag{3.5}
\end{equation*}
$$

2. If $N>N_{0}$ then

$$
\begin{equation*}
\inf _{u \in \mathcal{B}} F[u]=-\infty \tag{3.6}
\end{equation*}
$$

Proof. The second part of the theorem was proved in $[2,3]$. We outline the proof here for completeness. Since $0 \in \Omega, \exists \delta_{0}>0$ such that $B\left(0, \delta_{0}\right) \subset \Omega$. Consider a compactly supported function $u_{0} \in C_{0}^{\infty}(B(0,1))$, such that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} u_{0}^{2}=1 \tag{3.7}
\end{equation*}
$$

and consider the rescaling

$$
\begin{equation*}
u_{\delta}(\mathbf{x})=\frac{1}{\delta^{3 / 2}} u_{0}\left(\frac{\mathbf{x}}{\delta}\right), \quad 0<\delta<\delta_{0} \tag{3.8}
\end{equation*}
$$

Then $u_{\delta} \in \mathcal{B}$, and

$$
\begin{equation*}
F\left[u_{\delta}\right]=\frac{1}{\delta^{2}}\left(\frac{1}{2} \int_{\Omega}\left|\nabla u_{0}\right|^{2}-\frac{7 C_{T F} N^{2 / 3}}{25} \int_{\Omega} u_{0}^{10 / 3}\right)+\mathcal{O}\left(\frac{1}{\delta}\right) \tag{3.9}
\end{equation*}
$$

Define

$$
\begin{equation*}
A_{0}=\inf _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{10 / 3}}>0 \tag{3.10}
\end{equation*}
$$

Then if $A_{0} / 2<7 C_{T F} N^{2 / 3} / 25$, we can choose u_{0} so that the leading term in (3.9) is negative, and when $\delta \rightarrow 0$, the desired result follows.

For the existence of minimizers, assume that N is such that $A_{0} / 2>7 C_{T F} N^{2 / 3} / 25$. By Lemma 3.1, there exist $C>0, \delta>0$ such that

$$
\begin{align*}
& F[u] \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\left(\frac{7 C_{T F} N^{2 / 3}}{25}+\delta\right) \int_{\Omega} u^{10 / 3}-C \\
\geq & \left(\frac{1}{2}-\frac{1}{A_{0}}\left(\frac{7 C_{T F} N^{2 / 3}}{25}+\delta\right)\right) \int_{\Omega}|\nabla u|^{2} \geq \tau \int_{\Omega}|\nabla u|^{2}-C, \tag{3.11}
\end{align*}
$$

where $\tau>0$. Therefore the functional is coercive, and the result follows from now from standard arguments in the Calculus of Variations, involving the Sobolev Embedding, and the Rellich-Kondrachov compactness theorem.

4 Header Information

The heading for any file using ata.cls is like this;
\documentclass[mathpazo]\{jms\}
\begin\{document\} }

\title\{Make the Title in Title Case\}

\author[An Author et. ~al]\{First Author \backslash affil\{1\}, Second Author \backslash affil $\{2\} \backslash$ comma\corrauth
and Third Author $\backslash a f f i l\{1\}\}$

\address\{\affilnum\{1\}\ Address for first and third authors

\affilnum\{2\}\ Address for second author\}
\emails\{\{\tt ata@global-sci.org\} (A. ~Author), \{\tt second@author.email\} (S.~Author), \{\tt third@author.email\}
(T. ~Author) \}
\begin\{abstract\} }
Text here, no equation, no citation, no reference.
\end\{abstract\} }
\ams\{list here\}
\clc\{list here\}
\keywords\{list here\}
\maketitle

\section\{First Section\}

\end\{document\} }

5 Some Remarks

5.1 Mathematics

jms.cls makes the full functionality of $\mathcal{A}_{\mathcal{M}} S \mathrm{~T}_{\mathrm{E}} \mathrm{X}$ available. We encourage the use of the align, gather and multine environments for displayed mathematics.

5.2 Cross-referencing

The use of the ${ }^{2} T_{E} X$ cross-reference system for figures, tables, equations and citations is encouraged.

Acknowledgments

The author would like to thank

References

[1] García-Cervera C J, An efficient real space method for orbital-free density-functional theory, Commun. Comput. Phys., 2(2) (2007), 334-357.
[2] Blanc X and Cancès E, Nonlinear instability of density-independent orbital-free kineticenergy functionals, J. Chem. Phys., 122 (2005), 214106.
[3] Blanc X and Cancès E, Technical report, http://www.ann.jussieu.fr/publications/2005/ R05014.pdf, 2005.

[^0]: *Corresponding author. Email addresses: ata@global-sci.org (M. Wong), xxx@xxx (Lai C), $\mathrm{xxx@xxx}$ (Smith J)

