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Abstract

We study the recovery conditions of weighted mixed `2/`p minimization for block s-

parse signal reconstruction from compressed measurements when partial block support

information is available. We show theoretically that the extended block restricted isom-

etry property can ensure robust recovery when the data fidelity constraint is expressed

in terms of an `q norm of the residual error, thus establishing a setting wherein we are

not restricted to Gaussian measurement noise. We illustrate the results with a series of

numerical experiments.
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1. Introduction

Recovering an unknown signal from significantly fewer measurements is a fundamental as-

pect in computational sciences today. The key ingredient here is the sparsity of the unknown

signal – a realisation that has led to the theory of compressed sensing (CS) [1–3] through which

successful recovery of high dimensional (approximately) sparse signals is now possible at a rate

significantly lower than the Nyquist sampling rate. This allows an unknown signal x ∈ RN

to be successfully recovered via y = Ax+ e ∈ Rm,m � N, if x is (approximately) sparse in

some transform domain, and the noise e satisfies ‖e‖2 ≤ ε, for ε > 0. In short, recovery is

possible if the measurement matrix A ∈ Rm×N satisfies the restricted isometry property (RIP):

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 for any k-sparse x and some δk ∈ [0, 1] [1]. Under such

conditions, stable and robust recovery is guaranteed via the `1 minimization

min
z
‖z‖1 s.t. ‖y −Az‖2 ≤ ε. (1.1)

The question of how few measurements one might use was answered when it was shown that

Gaussian random matrices satisfy the RIP with high probability, provided that m ≥ Ck log(eN/
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k), for some C > 0 [4]. Today, an interesting challenge lies in customizing the recovery process

to take into account prior knowledge about e.g. signal structure and properties of noise present.

However, so far no unified framework has been proposed for this purpose - something we aim

to do in this paper.

In addition to pure sparsity, nonzero signal components may appear in clustered regions,

either naturally or as a result of some sparsifying transformation. These ’blocks’ occur in many

real worlds scenarios such as genetics and image processing [5–7]. Incorporating the block

structure into a CS recovery algorithm provides some immediate benefits in terms of reduction

of the number of required measurements for stable recovery, and a more robust recovery via

better differentiation of recovery artifacts [8].

Let x[i] define the ith block of a vector x ∈ RN over the block index set I = {d1, . . . , dn}
such that N =

∑n
i=1 di, and let the blocks be formed sequentially with length di of block i

x = (x1 · · ·xd1︸ ︷︷ ︸
xT [1]

xd1+1 · · ·xd1+d2︸ ︷︷ ︸
xT [2]

· · ·xN−dn+1 · · ·xN︸ ︷︷ ︸
xT [n]

)T . (1.2)

We define a signal x ∈ RN as block k-sparse over I if x[i] is nonzero for at most k indices i,

i.e., if ‖x‖0,I ≤ k, where ‖x‖0,I =
∑n
i=1 I(‖x[i]‖2 > 0). The block structure of the unknown

signal can be incorporated into the recovery process via a mixed minimization scheme using

e.g. the `2/`1 norm [9], or its nonconvex generalization, the `2/`p norm (0 < p ≤ 1) [5, 6],

where the mixed `2/`p norm is defined as ‖x‖2,p = (
∑n
i=1‖x[i]‖p2)1/p. The sufficient condition

for the existence of an exact solution to (1.1) provided by the RIP has been generalized into

the block sparse setting, thus guaranteeing exact and robust recovery of block sparse signals

via both mixed `2/`1 and `2/`p minimization [5, 9].

It may furthermore be possible to draw an estimate of the support of the largest block

components of a signal, e.g., when working with recursive reconstruction of time sequences of

sparse spatial signals where support estimates of previous instances can be used to estimate the

present ones [10–12]. Given a support estimate T̃ ⊂ {1, . . . , N}, one can incorporate the prior

support information via a weighted minimization approach with weights ωi = ω ∈ [0, 1] when

i ∈ T̃ and ωi = 1 otherwise [10].

From a Bayesian point of view, the `2 fidelity constraint in (1.1) corresponds to a conditional

loglikelihood associated with Gaussian white noise. The measurement noise might however

not be Gaussian. This motivates an extension of the existing CS theory to one with a data

fidelity constraint expressed in the `q norm of the residual error. The case with k-sparse

signals has been studied in [4, 13, 14] for q ≥ 2 and in [15] for 0 ≤ q < 2. A sufficient

condition for sparse recovery from noisy measurements with non-Gaussian noise is given by an

extension of the RIP [13], wherein the measurement matrix A ∈ Rm×N is said to satisfy the

extended restricted isometry property (RIPq,2) of order k if there exists a δk ∈ (0, 1) such that

µ2
q,2(1− δk)‖x‖22 ≤ ‖Ax‖2q ≤ µ2

q,2(1 + δk)‖x‖22, for any k-sparse vector x and some µq,2 > 0. A

natural question is whether one can find an optimal `q constraint for specific noise types. We

expand the existing results to investigate possible q-optimality for block-sparse signals with

partially known block support.

Consider an arbitrary signal x ∈ RN , defined as (1.2), with xk as its best block k-sparse

approximation. Let T0 be the block support of xk, where T0 ⊂ {1, . . . , n} and |T0| ≤ k. Let

T̃ ⊂ {1, . . . , n} be the block support estimate, where |T̃ | = ρk and 0 ≤ ρ ≤ a for some a > 1

and |T̃ ∩T0| = αρk (for interpretation of ρ and α see [10]). We define the weighted mixed `2/`p
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minimization with an `q constraint of the fidelity term as

min
z

n∑
i=1

ωi‖z[i]‖p2, s.t. ‖y −Az‖q ≤ ε, (1.3)

where ωi = ω ∈ [0, 1] if i ∈ T̃ and ωi = 1 otherwise, 0 < p ≤ 1, and 0 ≤ q < ∞. We present a

sufficient condition for robust recovery of (approximately) block-sparse signals via a weighted

mixed `2/`p minimization with an `q data fidelity constraint in Section 2, thereby suggesting

a unified framework for prior data knowledge in terms of structure and noise properties. Our

recovery algorithm is based on convex optimization and an iteratively re-weighted least squares

(IRLS) approach and is presented in Section 3, together with numerical experiments that verify

our results.

2. An Extended Block Restricted Isometry Property

In this section, we introduce the extended block restricted isometry property as a sufficient

condition for robust recovery via the weighted mixed `2/`p minimization with an `q error

constraint. Extending the RIP has an advantage in the sense of an increased probability to

satisfy the property. This means that more sensing matrices can be used in compressed sensing

and allows for recovery of signals with more non-zero entries, i.e., less sparse signals, given that

the signal sparsity follows a block structure. By taking advantage of explicit block structure,

reconstruction performance can be improved [13,16,17].

Definition 2.1. A measurement matrix A ∈ Rm×N satisfies the extended block restricted

isometry property (BRIPq,2), q ≥ 2, over I = {d1, · · · , dn} of order k if

µ2
q,2(1− δk|I)‖x‖22 ≤ ‖Ax‖2q ≤ µ2

q,2(1 + δk|I)‖x‖22

for all x ∈ RN that are block k-sparse over I, some µq,2 > 0 and a BRIPq,2 constant δk|I ∈ [0, 1].

Note that for q = 2 we have µq,2 = 1, and the definition corresponds to that of the block RIP

in [9]. For convenience, we will use the notation δk for the BRIPq,2 constant δk|I when there is

no confusion. The following theorem provides a guarantee of robust recovery as a consequence

of the BRIPq,2.

Theorem 2.1. Let the best block k-sparse approximation of x ∈ RN , xk, be supported on the

block index set T0. Define y = Ax+e ∈ Rm with ‖e‖q ≤ ε. Let T̃ ⊂ {1, 2, . . . , n} be an arbitrary

set, and define ρ and α as before such that |T̃ | = ρk and |T0 ∩ T̃ | = αρk. Suppose that there

exists an a ∈ Z, with a ≥ (1− α)ρ, a > 1.

(i) For 2 ≤ q <∞, the measurement matrix A satisfies the BRIPq,2 with

(1− δ(a+1)k)p − ap/2−1γcpq > 0,

then the solution x] of problem (1.3) satisfies

‖x] − x‖p2 ≤ C1
εp

µpq,2
+ C2k

p/2−1ω̃ (2.1)

for some positive constants C1 and C2.
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(ii) For 0 ≤ q < 2 and exactly block k-sparse x, the measurement matrix A satisfies the

BRIP2,2 with

(1− δ(a+1)k)p − δp(2a+1)ka
p/2−1γ > 0,

then the solution x] of problem (1.3) satisfies

‖x] − x‖p2 ≤ C3ε
p (2.2)

for some positive constant C3.

Remark 2.1. We have γ = ω + (1− ω)(1 + ρ− 2αρ)1−p/2 and ω̃ = ω‖xT c0 ‖
p
2,p + (1 − ω)‖

xT̃ c∩T c0
‖p2,p for some given 0 ≤ ω ≤ 1, and cq = Cq(A, (a+ 1)k, ak) with

Cq(A, k, k
′) = min

{[
(δk + δk+k′)

(
δk′ + δk+k′ + q̃(1 + δk)

)]1/2
,

[(
δk+k′ + q̃

1 + δk+k′

2

)(
δk+k′ + q̃

2 + δk′ + δk+k′

2

)]1/2}
. (2.3)

where q̃ = q − 2.

Remark 2.2. The constants C1, C2 and C3 are explicitly given by the following expressions:

C1 =
2p(1 + ap/2−1γ)(1 + δ(a+1)k)p/2

(1− δ(a+1)k)p − ap/2−1γcpq
,

C2 = 2ap/2−1

[
cpq(1 + ap/2−1γ)

(1− δ(a+1)k)p − ap/2−1γcpq
+ 1

]
,

C3 =
2p(1 + ap/2−1γ)(1 + δ(a+1)k)p/2

(1− δ(a+1)k)p − δp(2a+1)ka
p/2−1γ

.

Remark 2.3. For Theorem 2.1 to hold, it is sufficient that

(i) For 2 ≤ q <∞, the measurements matrix A satisfies

δ(a+1)k < 1−
(
ap/2−1

(
ω + (1− ω)(1 + ρ− 2αρ)1−p/2

))1/p
c2q.

(ii) For 0 ≤ q < 2, the measurements matrix A satisfies

δ(2a+1)k <
1

1 +
(
ap/2−1

(
ω + (1− ω)(1 + ρ− 2αρ)1−p/2

))1/p .

An illustration of how the slightly stronger sufficient condition given in Remark 2.3 varies with

choices of ω, α and p for non-Gaussian noise is shown in Fig. 2.1. We observe that the condition

on the extended block restricted isometry constant (BRICq,2) weakens as the support estimate

accuracy α increases, thus allowing for a wider class of measurement matrices A. Furthermore,
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Fig. 2.1. Comparison of the sufficient conditions for recovery for the weighted mixed `2/`p minimization

with an `q error constraint for various choices of weights, accuracy levels and p. I all figures, we fix

a = 3, ρ = 1 and q = 1.

for each choice of p and α > 0.5, the condition weakens with increased weights ω. The opposite

occurs for α < 0.5, and for α = 0.5 the condition remains the same. This is to be expected since

the weights are constructed such that zero-expected blocks are penalized more. From another

point of view, the sufficient condition on the BRICq,2 weakens as p decreases, which reflects the

benefits of non-convex minimisation.

Note that the result for exactly block-sparse signals follows from letting ε = 0, and that

letting q = 2 reduces the result to Theorem 1 in [7]. A crucial step in the proof of Theorem 2.1

(see Appendix A) is specified in Lemma 2.1, which is based on the geometrical description of

the `q norm.

Lemma 2.1. Let u, v ∈ RN be block k-sparse and block k′-sparse, respectively, with disjoint

supports. If A ∈ Rm×N satisfies the BRIPq,2 (2 ≤ q <∞) of order k + k′ with constant δk+k′ ,

and of orders k and k′ with constants δk and δk′ , respectively, then

|〈J(Au), Av〉| ≤ µ2
q,2Cq(A, k, k

′)‖u‖2‖v‖2, (2.4)

where J(u)i = ‖u‖2−qq |ui|q−1sign(ui) and Cq(A, k, k
′) is as defined in (2.3).

The proof of Lemma 2.1 follows from the proof of Lemma 2 in [13] and is hence omitted here.

3. Simulations

In this section, we present a simulation study to illustrate the benefits of a weighted mixed

`2/`p minimisation with an `q constraint for recovery of (approximately) block k-sparse signals

with partially known block support. For the case of p = 1 and q ≥ 1, the problem is convex

and can be solved directly with the CVX toolbox for Matlab [18]. However, for 0 < p < 1

or q < 1 the problem is no longer convex. We therefore adopt an IRLS-inspired approach,

a methodology widely used for nonconvex recovery of sparse signals [5, 19, 20]. Our approach



6 K. LEFFLER, Z.Y. ZHOU AND J. YU

consists in approximating both norms in (1.3) by weighted `2 norms and hence solves

min
x
‖Wx‖2, s.t.

{
‖V (y −Ax)‖2 ≤ ε, 0 ≤ q < 1

‖y −Ax‖q ≤ ε, 1 ≤ q <∞
(3.1)

where V and W are diagonal weight matrices with entries(
2

q

(
‖y −Ax‖22 + ξ

)q/2−1)1/2

and

(
pω

2/p
i

(
‖ω1/p

i x[i]‖22 + ξ
)p/2−1)1/2

,

respectively, updated prior to each iteration. These forms of weight matrices lead to perfect

approximations of the desired norms when the solution converges [5, 21–24]. The value of the

perturbation parameter ξ is iteratively decreased so that it is negligible when the solution

converges. With (3.1) as our objective function, the problem is convex and can be solved using

CVX [18] via the following algorithm

Algorithm 3.1.

1. Set t = 0, ξ = 1, and initialize by solving x(0) = arg min
x
‖y −Ax‖22.

2. Set t = t+ 1 and solve for x(t) using (3.1).

3. Decrease ξ as ξ = 0.9ξ.

4. Evaluate convergence according to ‖x
(t)−x(t−1)‖2
‖x(t)‖2

and stop if it is less than 10−4. Oth-

erwise, go to 2.

In our experiments, the measurement matrix A was generated by creating a m×N matrix

with i.i.d. draws from a standard Gaussian distribution. The measurements y were observed

from a noisy model y = Ax + σu, where u represents noise drawn from a chosen distribution.

The purpose of the experiments was to compare the recovery performance of the mixed `2/`p
method for block-sparse signals in the presence of different types of noise, with respect to the

`q constraint. In this work, we consider noise from the Gaussian, uniform, beta, Laplace and

Poisson distributions, as well as highly impulsive noise.

We simulated block k-sparse signals of length N = 200, generated by uniformly choosing k

blocks of length d = 5 at random and then for these k blocks choosing non-zero values from the

standard Gaussian distribution. All signals were corrupted by noise at a level of σ = 0.1. The

performance was measured in terms of the signal to noise ratio

SNR = 20 log10

( ‖x‖2
‖x− x]‖2

)
where x represents the true signal and x] the reconstruction. In this work, the signal to noise

ratio is consistently presented as an average from 20 simulation runs.
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Fig. 3.1. Comparison of reconstruction performance via adaptive and non-adaptive recovery. Signals

were corrupted with uniform noise on [−0.5, 0.5] and recovery was performed with k = 5, ω = 0.3 and

α = 0.8.
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Fig. 3.2. Reconstruction performance versus support estimate size for various choices of weights,

accuracy levels and sparsity levels. Signals were corrupted with uniform noise on [−0.5, 0.5] and recovery

was performed with p = 0.6, q = 3, k = 6 and m = 80.

The results indicate an overall higher reconstruction performance for values of p < 1, active

block treatment and adaptive choices of q, especially for lower proportions of available mea-

surements, see Fig. 3.1. We observe that the pairings of α and ω seen in Fig. 2.1 do not

entirely match with experimental results, which indicate an overall lower performance for very

low values of ω, see Figs. 3.2-3.3. This behaviour can partly be explained by situations where

we cannot recover the full support of the unknown signal. Lower weight choices will then be

more harshly penalised. In these situations, we expect intermediate weight choices to result in

the best performance [10]. The results furthermore indicate that less sparse signals are more

sensitive to choices of weights, in particular as the estimated support size increases. Moreover,

we observe a small increase in performance from lower to higher accuracy levels for lower pro-

portions of available measurements. As an example, for signals with block-sparsity k = 6, the
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Fig. 3.3. Reconstruction performance versus number of measurements for various choices of weights,

accuracy levels and sparsity levels. Signals were corrupted with uniform noise on [−0.5, 0.5] and recovery

was performed with p = 0.6, q = 3, k = 6 and ρ = 1.

relative improvement in SNR from α = 0.2 to α = 0.8 when ω = 0.7 and m = 40 is 13.4%, see

Fig. 3.3.

Fig. 3.4 illustrates the effect of the `q constraint for different noise models. As expected,

optimal reconstruction performance was achieved at q = 2 for standard Gaussian noise and at

q = 1 for Laplacian noise (see, e.g., [4]). In addition, optimal q-values for several other types of

noise distributions were found, thereby clearly illustrating the benefits of the adaptive `q norm.
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Fig. 3.4. Reconstruction performance for different noise types: standard Gaussian, uniform on

[−0.5, 0.5], beta with (0.5, 0.5), Laplace with (0, 1), Poisson with rate exp{x̄}, and highly impulsive

noise. Recovery was performed with p = 0.6, m = 80, k = 5, d = 5, ω = 0.3, and 80% support

knowledge accuracy. Top right: Zoom of performance for standard Gaussian and Laplace noise.
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4. Conclusion

The objective of this work was to introduce a noise-aware model-based approach to com-

pressed sensing for block-sparse signals. We have shown theoretically that the reconstruction

error of the presented optimization is bounded by the noise level if the measurement matrix

satisfies an extended block restricted isometry property, and experimentally that our method

exhibits a substantial increase in reconstruction quality for highly under-sampled signals com-

pared to existing methods that do not incorporate signal structure. Furthermore, our method

provides guidance concerning optimal norm constraints for different noise models.

A. Proof of Theorem 2.1

Proof. [The case when 2 ≤ q <∞] Let x] = x+h be a solution of the optimization problem

(1.3), with x as the unknown true signal. Let xT denote a vector equal to x on the block index

set T and zero elsewhere. Then

ω‖xT̃ + hT̃ ‖
p
2,p + ‖xT̃ c + hT̃ c‖

p
2,p ≤ ω‖xT̃ ‖

p
2,p + ‖xT̃ c‖

p
2,p.

Let T̃α = T0 ∩ T̃ . Applying the forward and reverse triangle inequalities together with some

manipulations yields

‖hT c0 ‖
p
2,p ≤ω‖hT0

‖p2,p + (1− ω)‖h(T0∪T̃ )\T̃α‖
p
2,p

+ 2
(
ω‖xT c0 ‖

p
2,p + (1− ω)‖xT̃ c∩T c0 ‖

p
2,p

)
. (A.1)

Next, decompose hT c0 by partitioning T c0 into disjoint block index sets Tj (j ≥ 1) such that

each Tj consists of ak blocks (a > 1), i.e. T1 indexes the ak blocks with the largest `2 norm of

hT c0 , T2 indexes the ak blocks with the second largest `2 norm of hT c0 , and so on. As a result

hT c0 =
∑
j≥1 hTj , with ‖hTj‖

p
2 ≤ (ak)p/2−1‖hTj−1

‖p2,p so that∑
j≥2

‖hTj‖
p
2 ≤ (ak)p/2−1‖hT c0 ‖

p
2,p,

and since ‖h(T0∪T1)c‖2 ≤ (ak)1/2−1/p
∑
j≥1‖hTj‖2,p we get

‖h(T0∪T1)c‖
p
2 ≤ (ak)p/2−1‖hT c0 ‖

p
2,p. (A.2)

Let T01 = T0 ∪ T1, and combine expressions (A.1) and (A.2) into

‖hT c01‖
p
2 ≤(ak)p/2−1

[
ω‖hT0

‖p2,p + (1− ω)‖h(T0∪T̃ )\T̃α‖
p
2,p

+ 2
(
ω‖xT c0 ‖

p
2,p + (1− ω)‖xT̃ c∩T c0 ‖

p
2,p

)]
. (A.3)

From the definition of J we have

‖AhT01
‖2q ≤ 〈J(AhT01

), Ah〉+
∑
j≥2

|〈J(AhT01
), AhTj 〉|.

Taking the pth power and using the fact that (b+ c)p ≤ bp + cp, for any b, c > 0 and 0 < p ≤ 1,

we get

‖AhT01
‖2pq ≤

(
〈J(AhT01

), Ah〉
)p

+
∑
j≥2

(
|〈J(AhT01

), AhTj 〉|
)p
. (A.4)
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As x and x] are both feasible solutions of (1.3), we have

‖Ah‖q ≤ ‖Ax− y‖q + ‖Ax] − y‖q ≤ 2ε,

and since A satisfies BRIPq,2, applying Holder’s inequality with parameters r = q
1−q and s = q

yields

〈J(AhT01
), Ah〉 ≤ 2εµq,2

(
1 + δ(a+1)k

)1/2‖hT01
‖2. (A.5)

Lemma 2.1 furthermore gives

|〈J(AhT01
), AhTj 〉| ≤ µ2

q,2cq‖hT01
‖2‖hTj‖2 (A.6)

with cq = Cq(A, (a+ 1)k, ak). Combining (A.4)–(A.6), and applying the BRIPq,2, we get

µpq,2(1− δ(a+1)k)p‖hT01
‖p2

≤(2ε)p(1 + δ(a+1)k)p/2 + µpq,2c
p
q‖hT c01‖

p
2. (A.7)

The ak (a > 1) largest coefficients of hT c0 are contained in the set T1, and we have |(T0∪T̃ )\T̃α| =
(1 + ρ− 2αρ)k as well as |T̃ \ T̃α| = (1− α)ρk ≤ ak, so

‖h(T0∪T̃ )\T̃α‖
p
2,p ≤

[
(1 + ρ− 2αρ)k

]1−p/2‖hT01
‖p2,

‖hT0‖
p
2,p ≤ k1−p/2‖hT0‖

p
2 ≤ k1−p/2‖hT01‖

p
2.

Together with (A.3) and (A.7) we thus get

µpq,2(1− δ(a+1)k)p‖hT01
‖p2

≤(2ε)p(1 + δ(a+1)k)p/2 + µ2cpqa
p/2−1

(
γ‖hT01

‖p2 + 2kp/2−1ω̃
)
,

where ω̃ = ω‖xT c0 ‖
p
2,p+(1−ω)‖xT̃ c∩T c0 ‖

p
2,p and γ = ω+(1−ω)

[
(1+ρ−2αρ)

]1−p/2
. Rearranging

the terms yields

µpq,2

[
(1− δ(a+1)k)p − ap/2−1γcpq

]
‖hT01‖

p
2

≤(2ε)p(1 + δ(a+1)k)p/2 + 2µpq,2c
p
q(ak)p/2−1ω̃.

Therefore, if (1− δ(a+1)k)p − ap/2−1γcpq > 0, we get

‖hT01
‖p2 ≤

(2ε)p(1 + δ(a+1)k)p/2 + 2µpq,2c
p
q(ak)p/2−1ω̃

µpq,2

[
(1− δ(a+1)k)p − ap/2−1γcpq

] . (A.8)

So in the end

‖x− x]‖p2 ≤
2p(1 + ap/2−1γ)(1 + δ(a+1)k)p/2

(1− δ(a+1)k)p − ap/2−1γcpq
εp

µpq,2

+ 2(ak)p/2−1ω̃

[
cpq(1 + ap/2−1γ)

(1− δ(a+1)k)p − ap/2−1γcpq
+ 1

]
,

which completes the proof for q ≥ 2.
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[The case when 0 ≤ q < 2] According to the arguments in the first part of the proof, with

the changed assumption that the measurement matrix A satisfies the BRIP2,2, we have

‖AhT01
‖22 ≤ 〈AhT01

, Ah〉+
∑
j≥2

|〈AhT01
, AhTj 〉|.

Taking the pth power and using the fact that (b+ c)p ≤ bp + cp, for any b, c ≥ 0 and 0 < p ≤ 1,

we have

‖AhT01
‖2p2 ≤

(
〈AhT01

, Ah〉
)p

+
∑
j≥2

(
|〈AhT01

, AhTj 〉|
)p

where

〈AhT01
, Ah〉 ≤ (1 + δ(a+1)k)1/2‖hT01

‖2‖Ah‖2,
|〈AhT01 , AhTj 〉| ≤ δ(2a+1)k‖hT01‖2‖hTj‖2.

Combining these results, we get

(1− δ(a+1)k)p‖hT01‖
p
2 ≤ (1 + δ(a+1)k)p/2‖Ah‖p2 + δp(2a+1)k‖hT c01‖

p
2. (A.9)

If we consider x as exactly block k-sparse and supported on T0, then by adopting (A.3) we have

‖hT c01‖
p
2 ≤ ap/2−1γ‖hT01

‖p2 (A.10)

with γ = ω + (1− ω)(1 + ρ− 2αρ)1−p/2. Together, (A.9) and (A.10) yield

‖hT01‖
p
2 ≤

(1 + δ(a+1)k)p/2

(1− δ(a+1)k)p − δ(2a+1)kap/2−1γ
‖Ah‖p2,

where ‖Ah‖2 ≤ ‖Ax] − y‖2 + ‖Ax − y‖2 ≤ ‖Ax] − y‖q + ‖Ax − y‖q ≤ 2ε for 0 ≤ q < 2. So,

finally, we get

‖x− x]‖p2 ≤ (1 + ap/2−1γ)
(1 + δ(a+1)k)p/2

(1− δ(a+1)k)p − δp(2a+1)ka
p/2−1γ

(2ε)p

which completes the proof. �
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[4] S. Dirksen, G. Lecué and H. Rauhut, On the gap between restricted isometry properties and

sparse recovery conditions, IEEE Transactions on Information Theory, (2016).



12 K. LEFFLER, Z.Y. ZHOU AND J. YU

[5] Y. Wang, J. Wang and Z. Xu, On recovery of block-sparse signals via mixed l2/lq (0 < q ≤ 1)

norm minimization, EURASIP Journal of Advances in Signal Processing, 2013:1 (2013), 76–92.

[6] Y. Wang, J. Wang and Z. Xu, Restricted p-isometry properties of nonconvex block-sparse com-

pressed sensing, Signal Processing, 104 (2014), 188–196.

[7] Z. Zhou and J. Yu, Recovery analysis for weighted mixed `2/`p minimization with 0 < p ≤ 1,

Journal of Computational and Applied Mathematics, 352 (2019), 210–222.

[8] R.G. Baranuik, V. Cevher, M.F. Duarte and C. Hegde, Model-based compressive sensing, IEEE

Transactions on Information Theory, 56:4 (2010), 1982–2001.

[9] Y.C. Eldar and M. Mishali, Robust recovery of signals from a structured unoin of subspaces,

IEEE Transactions on Information Theory, 55:11 (2009), 5302–5316.
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