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Abstract

Pressure correction methods constitute the most widely used solvers for the time-

dependent Navier-Stokes equations. There are several different pressure correction meth-

ods, where each time step usually consists in a predictor step for a non-divergence-free

velocity, followed by a Poisson problem for the pressure (or pressure update), and a final

velocity correction to obtain a divergence-free vector field. In some situations, the equa-

tions for the velocities are solved explicitly, so that the numerical most expensive step is

the elliptic pressure problem. We here propose to solve this Poisson problem by a domain

decomposition method which does not need any communication between the sub-regions.

Hence, this system is perfectly adapted for parallel computation. We show under certain

assumptions that this new scheme has the same order of convergence as the original pres-

sure correction scheme (with global projection). Numerical examples for the Stokes system

show the effectivity of this new pressure correction method. The convergence order O(k2)

for resulting velocity fields can be observed in the norm l2(0, T ;L2(Ω)).

Mathematics subject classification: 76D07, 65M55.

Key words: Stokes system, Navier-Stokes, Pressure correction, Finite elements.

1. Introduction

Pressure correction methods are the most widely used methods to solve the time-dependent

Navier-Stokes equations, because they open the possibility to decouple the momentum equa-

tion from the divergence equation and, hence, lead to the possibility to use different solution

techniques for obtaining the velocity and the pressure.

Since the pioneering work of Chorin and Temam [2, 8] many different pressure correction

methods have been proposed. An extensive overview was provided by Guermond et al [3]. These

methods commonly contain a prediction step for a not necessarily divergence-free velocity field,

followed by a Poisson problem for the pressure (or a pressure update), and finally a projection

of the previously computed velocity onto a divergence free one. In certain applications with the

need of small time steps due to accuracy reasons, the predictor step can be formulated in an

explicit way. Of course this requires an explicit treatment of the convective and diffusive term,

so that severe time step restrictions are needed for stability. However, this is acceptable for

typical applications as for instance in climate research. In this case, a numerically very expensive

part of the splitting scheme is the Poisson problem for the pressure (update). It is a global

problem with an associated matrix to be inverted with condition number dependent on the

mesh resolution. For finer meshes, the condition number becomes larger, so that many iterative

solvers (such as conjugate gradient methods, Jacobi iteration and Gauss-Seidel methods) suffer

in terms of convergence rates. Parallelization on multi-core computers or parallel computers
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may help to reduce the simulation time but always require suitable further iteration techniques

to account for the elliptic character of the Poisson problem.

Therefore, we propose in this work an alternative splitting method which replaces the glob-

al Poisson problem for the pressure update by a number of smaller non-overlapping Poisson

problems that are completely decoupled. This gives the possibility to solve the pressure cor-

rection step in parallel without any communication within the iterative linear solver. In terms

of accuracy, the resulting scheme is comparable to the original scheme. To a certain extent,

the new method presented and analyzed here can be considered as an extension of the coarse

grid projection method introduced by Lentine et al. [7] and recently studied by Kashefi and

Staples [6].

We present this modified scheme, demonstrate several properties, and show first numerical

results. The starting splitting scheme is not restricted to a special one. However, for ease of

presentation, we consider in this work the pressure correction scheme of Timmermans et al. [9],

which has been analyzed by Shen and Guermond [4] and is considered to be among the most

accurate ones.

We start with a standard and well-analyzed pressure correction method in Section 2. The

new local pressure correction scheme is introduced in Section 3, where we still give freedom of

a concrete projection. The a priori analysis is topic of Section 4. To this end we formulate a

necessary condition of the projection (Assumption 4.1). One possible realization of the local

projection is given in Section 5. We also verify the assumption needed previously to prove the

error estimate. First numerical results are subject of Section 6. We end with a short conclusion

and outlook.

2. Pressure Correction for the Stokes System

We consider the time-dependent Stokes equations in a Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3},
homogeneous Dirichlet conditions on ∂Ω and initial velocity field u0. With the velocity field

u : Ω→ Rd, the pressure p : Ω→ R, and a forcing term f : Ω→ Rd the Stokes system reads

∂tu− ν∆u+∇p = f in ΩT := Ω× (0, T ], (2.1)

divu = 0 in ΩT , (2.2)

u = 0 on ∂Ω× (0, T ], (2.3)

u(0) = u0 in Ω. (2.4)

Here, ν > 0 is a positive, constant viscosity. We takeM+1 discrete time points 0 = t0, t1, . . . , tM
with for simplicity a constant time step k = tm − tm−1 > 0 for all m, hence tm := mk for

0 ≤ m ≤ M = T/k. The outer normal on the boundary ∂Ω is denoted by n. The so-called

rotational incremental pressure-correction proposed by Timmermans et al. [9] starts with a

given u0 and p0 and reads for m ≥ 1:

Step 1: The velocity predictor ũm is obtained by solving the momentum equation with a

BDF(2)-scheme and a given pressure pm−1:

1

2k
(3ũm − 4um−1 + um−2)− ν∆ũm = f(tm)−∇pm−1 in Ω, (2.5)

ũm = 0 on ∂Ω. (2.6)


