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Abstract

We analyze the superconvergence property of the linear finite element method based

on the polynomial preserving recovery (PPR) for Robin boundary elliptic problems on

triangulartions. First, we improve the convergence rate between the finite element solution

and the linear interpolation under the H1-norm by introducing a class of meshes satisfying

the Condition (α, σ, µ). Then we prove the superconvergence of the recovered gradients

post-processed by PPR and define an asymptotically exact a posteriori error estimator.

Finally, numerical tests are provided to verify the theoretical findings.
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1. Introduction

Let Ω ⊂ R
2 be a bounded polygon with boundary Γ := ∂Ω. Let n be the unit normal

vector to the boundary exterior to Ω. We consider the supercenvergence analysis for the model

problem: Find u ∈ H1(Ω) such that

a(u, v) :=

∫

Ω

(∇u · ∇v + cuv) +

∫

∂Ω

quv = f(v) + g(v), ∀v ∈ H1(Ω), (1.1)

where c ∈ L∞, q ∈ L∞(Γ), f ∈ H−1(Ω) and g ∈ H− 1

2 (∂Ω). We note that most results hold for

a general class of elliptic equations and (1.1) is for presenting the main idea and techniques in

their simplest form.

For given a shape regular triangulation Mh of Ω̄ with mesh size h, we denote

Vh :=
{

vh ∈ H1(Ω) : vh|τ ∈ P1(τ) ∀τ ∈ Mh

}

the space of all continuous, piecewise linear finite element functions corresponding to Mh. Here

P1 denotes the set of polynomials with degree at most one. The finite element solution uh ∈ Vh

satisfies

a(uh, vh) = f(vh) + g(vh), ∀v ∈ H1(Ω). (1.2)
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It is well known that there are many superclose and superconvergent results for Dirichlet

boundary problems [13, 16, 18, 19, 22]. The convergence analysis is for uniform grids or patch

symmetric grids at first. However, since it is difficult to construct uniform grids on unstructured

domains and the grids produced by grid generation algorithms are a small perturbation of

uniform grids in the most region of the domain, one considered the so-called mildly structured

grids where an O(h1+α) approximate parallelogram property is satisfied for pairs of adjacent

triangles in most parts of Ω except for a region of size O(h2σ) [6, 7, 16, 18]. Two finite element

functions vanishing on ∂Ω, the continuous linear finite element solution u0
h and the continuous

linear nodal interpolation u0
I of u0, are superclose in the sense that

‖∇u0
h −∇u0

I‖H1(Ω) = O(h1+min(α,1−σ)).

Here we assume that u0 is the exact solution to the Dirichlet boundary problem. Based on the

supercloseness, various post-processing techniques, such as the global L2 projection [6, 8, 11],

the Zienkiewicz-Zhu (ZZ) method [24,25], and the Polynomial Preserving Recovery [13,14,23],

have been proposed to produce a new approximation Rh(u
0
h) of ∇u0, which is superconvergent

in the sense that

‖Rh(u
0
h)−∇u0‖H1(Ω) = O(h1+min(α,1−σ)).

Based on the superconvergence results, an asymptotically exact error estimator can be con-

structed [7, 16]. In the last decade the convergence proof for Dirichlet boundary problem has

been well established. By contrast, there are only a few superconvergent works on the Robin

boundary problem. [9] considered the Robin boundary condition and proved the superconver-

gent rate of O(h3/2). [3] considered the case of Neumann boundary and α = 1 (i.e. each

of the “good” pairs of triangles forms an O(h2) approximate parallelograms) and proved the

superconvergent rate of O(h2−σ | log h|
1

2 ).

In this work, we investigate the superconvergence property of the method (1.2) when being

post-processed by the polynomial preserving recovery (PPR) for the Robin boundary problem.

PPR was proposed by Zhang and Naga [23] in 2004 and has been successfully applied to finite

element methods. COMSOLMultiphysics adopted PPR as a post-processing tool since 2008, see

[1]. One important feature of PPR is its superconvergence property for the recovered gradient.

To learn more about PPR, readers are referred to [13,16,20,21]. Some theoretical results about

recovery techniques and recovery-type error estimators can be found in [4, 12, 18, 19, 22].

We first extend the definition of mildly structured grids to the boundary by assuming that

the two triangles associated to a “good” boundary node are O(h1+α) approximate congruent

triangles and the number of “bad” boundary nodes is of order O(h−2µ) for some 0 ≤ µ < 1
2 .

Secondly, we prove the following supercloseness result:

‖uh − uI‖H1(Ω) = O
(

h1+min(α,1−σ) +min
(

h2−2µ |log h|
1

2 , h
3

2

)

)

,

which improves the estimates of [3, 9]. Denote Gh : Vh → Vh × Vh as the gradient recovery

operator from PPR. Thirdly, we obtain the following estimate:

‖∇u−Ghuh‖L2(Ω) . h1+min{α,1−σ} +min(h2−2µ |log h|
1

2 , h3/2). (1.3)

Based on the superconvergent result, we define an asymptotically exact a posteriori error esti-

mator ‖Ghuh −∇uh‖L2(Ω). Readers are referred to [2, 5, 10, 15] for further theoretical results

about recovery techniques and recovery-type error estimators.


