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Abstract

Optimal convergence rates of adaptive finite element methods are well understood in

terms of the axioms of adaptivity. One key ingredient is the discrete reliability of a residual-

based a posteriori error estimator, which controls the error of two discrete finite element

solutions based on two nested triangulations. In the error analysis of nonconforming finite

element methods, like the Crouzeix-Raviart or Morley finite element schemes, the dif-

ference of the piecewise derivatives of discontinuous approximations to the distributional

gradients of global Sobolev functions plays a dominant role and is the object of this paper.

The nonconforming interpolation operator, which comes natural with the definition of the

aforementioned nonconforming finite element in the sense of Ciarlet, allows for stability

and approximation properties that enable direct proofs of the reliability for the residual

that monitors the equilibrium condition. The novel approach of this paper is the sugges-

tion of a right-inverse of this interpolation operator in conforming piecewise polynomials to

design a nonconforming approximation of a given coarse-grid approximation on a refined

triangulation. The results of this paper allow for simple proofs of the discrete reliability

in any space dimension and multiply connected domains on general shape-regular trian-

gulations beyond newest-vertex bisection of simplices. Particular attention is on optimal

constants in some standard discrete estimates listed in the appendices.
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1. Introduction

1.1. Motivation

The nonconforming finite element schemes are a subtile but important part of the finite

element practice not exclusively in computational fluid dynamics [1–3], but also with benefits

for guaranteed lower bounds of eigenvalues [5,9], lower bounds for energies e.g. in the obstacle

problem [13], or guaranteed convergence for a convex energy density despite the presence of the

Lavrentiev phenomenon [23]. Prominent examples are Crouzeix-Raviart [17] and Morley [22]

finite elements illustrated in Fig. 1.1.a and d.

The discrete reliability is one key-property in the overall analysis of optimal convergence

rates in adaptive mesh-refining algorithms and one axiom in [4,15]. Its proof is a challenge in the

nonconforming setting since even given an admissible refinement T̂ of an regular triangulation

T the associated finite element spaces are non-nested V (T̂ ) 6⊂ V (T ).
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(a) Crouzeix-Raviart (b) P1 (c) P2 (d) Morley (e) HCT

Fig. 1.1. Mnemonic diagrams of the finite elements in 2D.

1.2. Methodology

The authors see three different arguments (i)–(iii) to circumvent the non-nestedness of the

nonconforming schemes in the literature,

(i) appropriate mesh-refining,

(ii) discrete Helmholtz decomposition,

(iii) conforming companions.

For Crouzeix-Raviart finite elements see Theorem 2.1 in [24] for (ii). The restriction to simply-

connected domains and dimension n = 2 from (ii) is circumvented in [7] for Crouzeix-Raviart

using intermediate triangulations (i) and an associated discrete quasi-interpolation. For the

Morley finite element analysis see Lemma 5.5 in [20] for (i) and Theorem 4.1 in [6] for (ii). This

paper presents (iii) and its application for more general and refined results to prove discrete

reliability. This general domain independent principle shall serve as a guideline for the many

nonconforming methods in the rich literature. Often a discrete Helmholtz decomposition is

not available, however the construction of a conforming companion although allows to compute

guaranteed upper error bounds. Therefore, it seems intuitive to use this operator for the proof

of discrete reliability as outlined in this paper.

1.3. Model Problems

For better intuition the reader may have the following model problems in mind. Given

a polyhedral Lipschitz domain Ω ⊂ R
n and a right-hand side f ∈ L2(Ω), for a second-order

problem consider the Poisson Model Problem, find u ∈ H1(Ω) with

∆u = f in Ω and u = 0 along ∂Ω,

where the weak formulation seeks u ∈ H1
0 (Ω) such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx for all v ∈ H1
0 (Ω).

The discrete version of this energy scalar product reads

ah(uh, vh) :=

∫

Ω

∇NCuh · ∇NCvh dx for all uh, vh ∈ H1(Ω) + V (T ) + V (T̂ ), (1.1)

where a possible choice for the nonconforming finite element space V (T ) is the Crouzeix-Raviart

space CR1
0(T ). A simple fourth-order elliptic problem is the biharmonic equation, which seeks

u ∈ H2(Ω) with

∆2u = f in Ω and u =
∂u

∂ν
= 0 along ∂Ω.


