Trees with Given Diameter Minimizing the Augmented Zagreb Index and Maximizing the ABC Index

HUANG YU-FEI

(Department of Mathematics Teaching, Guangzhou Civil Aviation College, Guangzhou, 510403)

Communicated by Du Xian-kun

Abstract: Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. The augmented Zagreb index of a graph G is defined as

$$AZI(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2} \right)^3,$$

and the atom-bond connectivity index (ABC index for short) of a graph G is defined as

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}},$$

where d_u and d_v denote the degree of vertices u and v in G, respectively. In this paper, trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined, respectively.

Key words: tree, augmented Zagreb index, ABC index, diameter

2010 MR subject classification: 05C35, 05C50

Document code: A

Article ID: 1674-5647(2017)01-0008-11

DOI: 10.13447/j.1674-5647.2017.01.02

1 Introduction

Let G be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. Let N_u denote the set of all neighbors of a vertex $u \in V(G)$, and $d_u = |N_u|$ denote the degree of u in G. A connected graph G is called a tree if $|E(G)| = |V(G)| - 1$. The length of a shortest path connecting the vertices u and v in G is called the distance between u and v, and denoted by $d(u, v)$. The diameter d of G is the maximum distance $d(u, v)$ over all pairs of vertices u and v in G.

Received date: Feb. 3, 2015.
Foundation item: The NSF (11501139) of China.
E-mail address: fayger@qq.com (Huang Y F).
Molecular descriptors have found wide applications in QSPR/QSAR studies (see [1]). Among them, topological indices have a prominent place. Augmented Zagreb index, which was introduced by Furtula et al.[2], is a valuable predictive index in the study of the heat of formation in octanes and heptanes. Another topological index, Atom-bond connectivity index (for short, ABC index), proposed by Estrada et al.[3], displays an excellent correlation with the heat of formation of alkanes (see [3]) and strain energy of cycloalkanes (see [4]).

The augmented Zagreb index of a graph G is defined as:

$$AZI(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2} \right)^3,$$

and the ABC index of a graph G is defined as:

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}.$$

Some interesting problems such as mathematical-chemical properties, bounds and extremal graphs on the augmented Zagreb index and the ABC index for various classes of connected graphs have been investigated in [2], [5] and [6]–[10], respectively. Besides, in the literature, there are many papers concerning the problems related to the diameter (see, e.g., [11]–[13]). In this paper, trees with given diameter minimizing the augmented Zagreb index and maximizing the ABC index are determined, respectively.

2 Trees with Given Diameter Minimizing the Augmented Zagreb Index

A vertex u is called a pendent vertex if $d_u = 1$. Let S_n and P_n denote the star and path of order n, respectively. Let $S_{n_1}^{n_2}$ be the tree of order $n \geq 3$ obtained from the path P_l by attaching n_1 and n_2 pendent vertices to the end-vertices of P_l respectively, where l, n_1, n_2 are positive integers, $n_1 \leq n_2$ and $l + n_1 + n_2 = n$. Especially, $S_{n_1}^{n_2} \cong S_n$ and $S_{n_2-2}^{1,1} \cong P_n$, where $1 \leq n_3 \leq \left\lfloor \frac{n-1}{2} \right\rfloor$.

Let $T_n^{(d)}$ denote the set of trees with n vertices and diameter d, where $2 \leq d \leq n - 1$. Obviously, $T_n^{(2)} = \{S_n\}$ and $T_n^{(n-1)} = \{P_n\}$. By simply calculating, we have

$$AZI(S_n) = \frac{(n-1)^4}{(n-2)^3}, \quad AZI(P_n) = 8(n-1).$$

2.1 The Augmented Zagreb Index of a Tree with Diameter 3

It can be seen that $T_n^{(3)} = \left\{ S_{n_2}^{p-1,n-p-1} \; \bigg| \; 2 \leq p \leq \left\lfloor \frac{n}{2} \right\rfloor \right\}$. In the following, we give an order of the augmented Zagreb index of a tree with diameter 3.

Lemma 2.1 Let

$$g(x) = \frac{x^2}{(x-1)^2}, \quad k(x) = \frac{-2x^2}{(x-1)^3}, \quad m(x) = \frac{-3}{x(x-1)} + \frac{-2x+1}{x^2(x-1)^2}.$$

Then $g(x)$ is decreasing for $x \geq 2$, and $k(x)$, $m(x)$ are both increasing for $x \geq 2$.