
Journal of Computational Mathematics

Vol.37, No.6, 2019, 778–812.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1906-m2018-0282

PROXIMAL-PROXIMAL-GRADIENT METHOD*

Ernest K. Ryu and Wotao Yin

Department of Mathematics, University of California, Los Angeles, CA 90095, USA

Email: eryu@math.ucla.edu, wotaoyin@math.ucla.edu

Abstract

In this paper, we present the proximal-proximal-gradient method (PPG), a novel opti-

mization method that is simple to implement and simple to parallelize. PPG generalizes the

proximal-gradient method and ADMM and is applicable to minimization problems writ-

ten as a sum of many differentiable and many non-differentiable convex functions. The

non-differentiable functions can be coupled. We furthermore present a related stochastic

variation, which we call stochastic PPG (S-PPG). S-PPG can be interpreted as a gener-

alization of Finito and MISO over to the sum of many coupled non-differentiable convex

functions.

We present many applications that can benefit from PPG and S-PPG and prove con-

vergence for both methods. We demonstrate the empirical effectiveness of both methods

through experiments on a CUDA GPU. A key strength of PPG and S-PPG is, compared

to existing methods, their ability to directly handle a large sum of non-differentiable non-

separable functions with a constant stepsize independent of the number of functions. Such

non-diminishing stepsizes allows them to be fast.

Mathematics subject classification: 47N10, 65K05, 90C06, 90C25, 90C30.

Key words: Proximal-gradient, ADMM, Finito, MISO, SAGA, Operator splitting, First-

order methods, Distributed optimization, Stochastic optimization, Almost sure conver-

gence, linear convergence.

1. Introduction

In the past decade, first-order methods like the proximal-gradient method and ADMM

have enjoyed wide popularity due to their broad applicability, simplicity, and good empirical

performance on problems with large data sizes. However, there are many optimization problems

such existing simple first-order methods cannot directly handle. Without a simple and scalable

method to solve them such optimization problems have been excluded from machine learning

and statistical modeling. In this paper we present the proximal-proximal-gradient method

(PPG), a novel method that expands the class of problems that one can solve with a simple

and scalable first-order method.

Consider the optimization problem

minimize r(x) +
1

n

n∑
i=1

(fi(x) + gi(x)), (1.1)

where x ∈ Rd is the optimization variable, f1, . . . , fn, g1, . . . , gn, and r are convex, closed, and

proper functions from Rd to R ∪ {∞}. Furthermore, assume f1, . . . , fn are differentiable. We

* Received December 18, 2018 / Accepted June 24, 2019 /

Published online July 31, 2019 /



Proximal-proximal-gradient Method 779

call the method

xk+1/2 = proxαr

(
1

n

n∑
i=1

zki

)
,

xk+1
i = proxαgi

(
2xk+1/2 − zki − α∇fi(xk+1/2)

)
,

zk+1
i = zki + xk+1

i − xk+1/2, (PPG)

the proximal-proximal-gradient method (PPG). The xk+1
i and zk+1

i updates are performed for

all i = 1, . . . , n and α > 0 is a stepsize parameter. To clarify, x, x1, . . . , xn and z1, . . . , zn are

all vectors in Rd (xi is not a component of x), xk+1
1 , . . . , xk+1

n and xk+1/2 approximates the

solution to Problem (1.1).

Throughout this paper we write proxh for the proximal operator with respect to the function

h, defined as

proxh(x0) = argmin
x

{
h(x) +

1

2
‖x− x0‖22

}
for a function h : Rd → R ∪ {∞}. When h is the zero function, proxh is the identity operator.

When h is convex, closed, and proper, the minimizer that defines proxh exists and is unique [40].

For many interesting functions h, the proximal operator proxh has a closed or semi-closed form

solution and is computationally easy to evaluate [12, 45]. We loosely say such functions are

proximable.

In general, the proximal-gradient method or ADMM cannot directly solve optimization

problems expressed in the form of (1.1). When f1, . . . , fn are not proximable, ADMM either

doesn’t apply or must run another optimization algorithm to evaluate the proximal operators at

each iteration. When n ≥ 2 and g1, . . . , gn are nondifferentiable nonseparable, so g1 + · · ·+gn is

not proximable (although each individual g1, . . . , gn is proximable). Hence, proximal-gradient

doesn’t apply.

One possible approach to solving (1.1) is to smooth the non-smooth parts and applying a

(stochastic) gradient method. Sometimes, however, keeping non-smooth part is essential. For

example, it is the non-smoothness of total variation penalty that induces sharp edges in image

processing. In these situations (PPG) is particularly useful as it can handle a large sum of

smooth and non-smooth terms directly without smoothing.

Parameter server

Worker 1 (zk1 ) Worker 2 (zk2 ) · · · Worker n (zkn)

Fig. 1.1. When (PPG) is implemented on a parameter server computing model, the worker nodes

communicate (synchronously) with the parameter server but not directly with each other.

Distributed PPG. To understand the algorithmic structure of the method, it is helpful to see

how (PPG) is well-suited for a distributed computing network. See Fig. 1.1, which illustrates

a parameter server computing model with a master node and n worker nodes.


