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Abstract. We propose a method that combines Isogeometric Analysis (IGA) with the
interior penalty discontinuous Galerkin (IPDG) method for solving the Allen-Cahn
equation, arising from phase transition in materials science, on three-dimensional (3D)
surfaces consisting of multiple patches. DG ideology is adopted at patch level, i.e., we
employ the standard IGA within each patch, and employ the IPDG method across the
patch interfaces. IGA is very suitable for solving Partial Differential Equations (PDEs)
on (3D) surfaces and the IPDG method is used to glue the multiple patches together to
get the right solution. Our method takes advantage of both IGA and the IPDG method,
which allows us to design a superior semi-discrete (in time) IPDG scheme. First and
most importantly, the time-consuming mesh generation process in traditional Finite El-
ement Analysis (FEA) is no longer necessary and refinements, including h-refinement
and p-refinement which both maintain the original geometry, can be easily performed
at any level. Moreover, the flexibility of the IPDG method makes our method very
easy to handle cases with non-conforming patches and different degrees across the
patch interfaces. Additionally, the geometrical error is eliminated (for all conic sec-
tions) or significantly reduced at the beginning due to the geometric flexibility of IGA
basis functions, especially the use of multiple patches. Finally, this method can be
easily formulated and implemented. We present our semi-discrete IPDG scheme after
generally describe the problem, and then briefly introduce the time marching method
employed in this paper. Theoretical analysis is carried out to show that our method
satisfies a discrete energy law, and achieves the optimal convergence rate with respect
to the L2 norm. Furthermore, we propose an elliptic projection operator on (3D) sur-
faces and prove an approximation error estimate which are vital for us to obtain the
error estimate in the L2 norm. Numerical tests are given to validate the theory and
gauge the good performance of our method.
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1 Introduction

This paper is concerned with the IPDG based IGA (see the discussion below) for the
Allen-Cahn equation on (3D) surfaces:





ut−∆su+
1
ε2 f (u)=0, (x,t)∈D×[0,T],

∇su·n=0, (x,t)∈∂D×[0,T],
u(x,0)=u0(x), x∈D,

(1.1)

where ∆s and ∇s denote the Laplace-Beltrami operator and the tangent gradient operator
on surface, respectively. D⊂ R

3 is a bounded surface domain with piecewise smooth
boundary ∂D. n, the unit outward normal of D along ∂D, is defined from a cross product
of the tangent vector of ∂D and the unit normal vector of D on ∂D. T is a fixed constant
and f (u) = F ′(u) for some double well potential density function F , which takes its
global minimum value 0 at u=±1. In this paper, we focus on the following widely used
quartic density function:

F(u)=
1

4
(u2−1)2. (1.2)

Note that (1.1) differs from the original Allen-Cahn equation (see [2]) in the scaling of
the time and domain. Actually, the time t here, called the fast time, represents t/ε2 in the
original formulation. In addition, (1.1) is defined on a (3D) surface domain D.

The original Allen-Cahn equation was introduced by Allen and Cahn [2] to describe
the motion of antiphase boundaries in crystalline solids. It was proposed as a simple
(nonconservative) model for the process of phase separation of a binary alloy at a fixed
temperature (cf. [31] and the reference therein), where the function u represents the con-
centration of one of the two metallic components of the alloy and the parameter ε is an
interaction length, which is small compared to the characteristic dimensions on the labo-
ratory scale. Recently, it has been applied to a wide range of problems such as the motion
by mean curvature flows [24] and crystal growth [35]. In particular, it has become a basic
model equation for the diffuse interface approach developed to study phase transitions
and interfacial dynamics in materials science [11]. For more physical background, deriva-
tion, and discussion of the Allen-Cahn equation, we refer the reader to [2, 12, 19, 21, 27].

Many numerical methods and corresponding theoretical analysis have been devel-
oped to solve the Allen-Cahn equation for two-dimensional (2D) plane case and (3D)
volume case, see [5,13,14,25,26,28,38,40]. However, applications in practice always need
to solve the Allen-Cahn equation on (3D) surfaces and no such work is carried out as far
as we know. Of course, the traditional FEA could be used to handle this problem, we
refer readers to the survey paper [20] for details about different finite element methods


