On the Uniqueness of Traveling Forced Curvature Fronts in a Fibered Medium

Gawtum Namah*

ENSMM, 26 chemin de l’Epitaphe, 25000 Besançon, and LMB, UMR CNRS 6623, Université de Bourgogne Franche-Comté, France.

Received December 21, 2017; Accepted April 27, 2018

Abstract. We investigate traveling fronts, including pulsating ones, of a forced curvature flow in a plane fibered medium. The main topic of this note is an uniqueness issue of such traveling fronts. In addition to line-shaped profiles, we also consider traveling fronts in the form of V-shaped parabolas.

AMS subject classifications: 35K55, 35B10

Key words: Traveling wave solutions, pulsating fronts, periodic fibered medium.

1 Introduction

In this note, we will be interested in traveling fronts of a forced curvature flow equation

\[V_n = R + K \] \hspace{1cm} (1.1)

in the plane containing periodic striations. \(V_n \) is the normal velocity of a propagating interface \(\Gamma(t) \), \(K \) is its mean curvature and \(R \) is the driving force. For example if \(\Gamma \) is a flame front, then \(R \) corresponds to the combustion rate of the burning material. In all cases, we will suppose that the function \(R \) is smooth and verifies

\[0 < R_m \leq R \leq R_M. \] \hspace{1cm} (1.2)

Before going further, let us give a definition of a traveling front of Eq. (1.1).

Definition 1.1. \(\Gamma(t) \), solution of (1.1) will be called a traveling front if there exists a constant vector \(v \in \mathbb{R}^2 \) such that

\[\Gamma(t) = \Gamma_0 + v \cdot t \]

for all \(t \in \mathbb{R} \). Then \(\Gamma_0 \) is the (constant) profile of the traveling front and \(|v| \), its speed, see Figure 1.

*Corresponding author. Email address: gnamah@ens2m.fr (G. Namah)
Note that if $\Gamma(t)$ can be represented by the graph of a function u in the x-y plane, for example
\[\Gamma(t) = \{(x,y)/y = u(x,t)\}, \]
then V_n is given by
\[V_n = \frac{u_t}{\sqrt{1+u_x^2}}, \]
so that Equation (1.1) becomes
\[u_t - R \sqrt{1+u_x^2} = \frac{u_{xx}}{1+u_x^2}, \quad t \in \mathbb{R}, x \in \mathbb{R}. \tag{1.3} \]

Now if $\Gamma(t)$ is a traveling front in the plane, we can suppose without loss of generality that v is parallel to the y-axis i.e. $v = \ell(0,t)$. Then $u(x,t)$ will be given by
\[u(x,t) = c + \varphi(x), \]
so that Equation (1.3) becomes
\[c - R \sqrt{1+\varphi_x^2} = \frac{\varphi_{xx}}{1+\varphi_x^2}, \quad x \in \mathbb{R}. \tag{1.4} \]

In the above, c is the speed and φ the constant profile of the wave. The pair (c,φ) will be called a traveling wave solution (TWS) of Eq. (1.3). Note that every solution φ of (1.4) is defined up to an additive constant.

Figure 1: A TWS: a constant profile moving with a constant speed in some given direction.