Vol. **52**, No. 1, pp. 53-59 March 2019

Some Notes on *k***-minimality**

Azam Etemad Dehkordy*

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran.

Received April 4, 2017; Accepted September 13, 2018

Abstract. The concept of minimality is generalized in different ways, one of which is the definition of *k*-minimality. In this paper *k*-minimality is studied for minimal hypersurfaces of a Euclidean space under different conditions on the number of principal curvatures. We will also give a counterexample to L_k -conjecture.

AMS subject classifications: 53D12, 53C40, 53C42.

Key words: *k*-minimal, minimal hypersurface, *L_k*-conjecture.

1 Introduction

Let $x: M \to \mathbb{E}^m$ be an isometric immersion from a Riemannian n-manifold into a Euclidean space. Denote the Laplacian, the position vector and the mean curvature vector field of M, respectively, by Δ, x and \vec{H} . Then, M is called a biharmonic submanifold if $\Delta \vec{H} = 0$. Beltrami's formula, $\Delta x = -n\vec{H}$, implies that every minimal submanifold of \mathbb{E}^m is a biharmonic submanifold.

Chen initiated the study of biharmonic submanifolds in the mid 1980s [4]. Then, Chen and other authors proved that, in specific cases, a biharmonic submanifold is a minimal submanifold [4,5,7] and Chen introduced his famous conjecture [3]. This conjecture remains open, although the study thereof is active nowadays. Among other results, it is proved in [6] that Chen's Conjecture is true for biharmonic hypersurfaces with three distinct principal curvatures in \mathbb{E}^m . Furthermore, under a generic condition, Koiso and Urakawa [8] gave affirmative answer to Chen conjecture.

The linearized operator of (k+1)-th mean curvature of a hypersurface, i.e. H_{k+1} , is the L_k operator. The L_k operator is a natural generalization of Laplace operator for k=1,...,n [9,10]. Let $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from a connected orientable Riemannian hypersurface into the Euclidean space \mathbb{E}^{n+1} . It is proved that [1]

$$L_k x = (k+1) \begin{pmatrix} n \\ k+1 \end{pmatrix} H_{k+1} N,$$

^{*}Corresponding author. Email address: ae110mat@cc.iut.ac.ir (A. Etemad)

where *N* is the unit normal vector field and k = 0, ..., n - 1. The *L*_k-conjecture is as follows.

 L_k -Conjecture. Every L_k -biharmonic hypersurface, namely a Euclidean hypersurface x: $M^n \to \mathbb{E}^{n+1}$ satisfying the condition $L_k^2 x = 0$ for some k = 0, ..., n-1, has zero (k+1)-th mean curvature.

A manifold with zero (k+1)-th mean curvature is called *k*-minimal for k = 0, ..., n-1. In 2015, Aminian and Kashani [2] proved the L_k -conjecture for Euclidean hypersurfaces with at most two principal curvatures. They also proved the L_k -conjecture for L_k -finite type hypersurfaces.

In this paper, we prove that the L_1 -conjecture is not true for a connected minimal hypersurface of a Eucldean space with arbitrary number of principal curvatures.

2 Preliminaries

In this section, we recall some standard definitions and results from Riemannian geometry. Let $n \ge 2$ and suppose $x: M^n \to \mathbb{E}^{n+1}$ is an isometric immersion from an *n*-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} .

Let *A* be the shape operator of this immersion and $\lambda_1, ..., \lambda_n$ be the eigenvalues of this self-adjoint operator. The mean curvature of *M* is given by

$$nH =$$
trace $A = \lambda_1 \dots \lambda_n$.

The k-th mean curvature of M is also defined by

$$\begin{pmatrix} n \\ k \end{pmatrix} H_k = s_k$$

where $s_0 = 1$ and $s_k = \sum_{\substack{1 \le i_1 < \cdots < i_k \le n}} \lambda_{i_1} \cdots \lambda_{i_k}$, for $k = 1, \dots, n$. It is obvious that $H_1 = H$ and

 $S = n(n-1)H_2$, where *S* is the scalar curvature of *M*.

The Newton transformations $P_k : C^{\infty}(TM^n) \to C^{\infty}(TM^n)$ are defined inductively by $P_0 = I$ and

$$P_k = s_k I - A \circ P_{k-1}, \quad 1 \le k \le n.$$

Therefore,

$$P_k = \sum_{i=0}^k (-1)^i s_{k-i} A^i, \ 1 \le k \le n.$$

Thus the Cayley-Hamilton theorem implies that $P_n = 0$. It is well known that each P_k is a self-adjoint linear operator which commutes with A. For k = 0, ..., n, the second