Lower Bounds of Dirichlet Eigenvalues for General Grushin Type Bi-Subelliptic Operators

Hua Chen*, Hongge Chen, Junfang Wang and Nana Zhang

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received 21 August 2017; Accepted (in revised version) 4 October 2017

Abstract. Let Ω be a bounded open domain in \mathbb{R}^n with smooth boundary $\partial\Omega$. Let $X = (X_1, X_2, \dots, X_m)$ be a system of general Grushin type vector fields defined on Ω and the boundary $\partial\Omega$ is non-characteristic for X. For $\Delta_X = \sum_{j=1}^m X_j^2$, we denote λ_k as the *k*-th eigenvalue for the bi-subelliptic operator Δ_X^2 on Ω . In this paper, by using the sharp sub-elliptic estimates and maximally hypoelliptic estimates, we give the optimal lower bound estimates of λ_k for the operator Δ_X^2 .

Key Words: Eigenvalues, degenerate elliptic operators, sub-elliptic estimate, maximally hypo-elliptic estimate, bi-subelliptic operator.

AMS Subject Classifications: 35J30, 35J70, 35P15

1 Introduction and main results

Let $X = (X_1, X_2, \dots, X_m)$ be the system of general Grushin type vector fields, which is defined on an open domain *W* in \mathbb{R}^n ($n \ge 2$).

Let $J = (j_1, \dots, j_k)$, $1 \le j_i \le m$ be a multi-index, $X^J = X_{j_1}X_{j_2}\cdots X_{j_k}$, we denote |J| = k be the length of J, if |J| = 0, then $X^J = id$. We introduce following function space (cf. [18, 21, 23]):

$$H_X^2(W) = \{ u \in L^2(W) | X^J u \in L^2(W), |J| \le 2 \}.$$

It is well known that $H_X^2(W)$ is a Hilbert space with norm $||u||_{H_X^2(W)}^2 = \sum_{|J| \le 2} ||X^J u||_{L^2(W)}^2$. Assume the vector fields $X = (X_1, X_2, \dots, X_m)$ satisfy Hörmander's condition :

Definition 1.1 (cf. [2, 12]). We say that $X = (X_1, X_2, \dots, X_m)$ satisfies the Hörmander's condition in *W* if there exists a positive integer *Q*, such that for any $|J| = k \le Q$, *X* together with all *k*-th repeated commutators

$$X_{J} = [X_{j_{1}}, [X_{j_{2}}, [X_{j_{3}}, \cdots, [X_{j_{k-1}}, X_{j_{k}}] \cdots]]]$$

http://www.global-sci.org/ata/

©2019 Global-Science Press

^{*}Corresponding author. *Email addresses:* chenhua@whu.edu.cn (H. Chen), hongge_chen@whu.edu.cn (H. G. Chen), wangjunfang@whu.edu.cn (J. F. Wang), zhangnana@whu.edu.cn (N. N. Zhang)

span the tangent space at each point of *W*. Here *Q* is called the Hörmander index of *X* in *W*, which is defined as the smallest positive integer for the Hörmander's condition to be satisfied.

For any bounded open subset $\Omega \subset \subset W$, we define the subspace $H^2_{X,0}(\Omega)$ to be the closure of $C_0^{\infty}(\Omega)$ in $H^2_X(W)$. Since $\partial\Omega$ is smooth and non characteristic for X, we know that $H^2_{X,0}(\Omega)$ is well defined and also a Hilbert space. In this case, we also say that X satisfies the Hörmander's condition on Ω with Hörmander index $1 \leq Q < +\infty$. Thus X is a finitely degenerate system of vector fields on Ω and the finitely degenerate elliptic operator $\Delta_X = \sum_{i=1}^m X_i^2$ is a sub-elliptic operator.

The degenerate elliptic operator Δ_X has been studied by many authors, e.g., Hörmander [11], Jerison and Sánchez-Calle [13], Métivier [17], Xu [23]. More results for degenerate elliptic operators can be found in [2–6] and [9,10,12,14].

In this paper, we study the following eigenvalues problem for bi-subelliptic operators in $H^2_{X,0}(\Omega)$:

$$\begin{cases} \Delta_X^2 u = \lambda u & \text{in } \Omega, \\ u = 0, X u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where *X* will be the following general Grushin type vector fields (see (1.5) and (1.7) below). In this case we know that for each *j*, *X_j* is formally skew-adjoint, i.e., $X_j^* = -X_j$. Then there exists a sequence of discrete eigenvalues $\{\lambda_j\}_{j\geq 1}$ for the problem (1.1), which satisfying $0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \cdots \le \lambda_k \cdots$ and $\lambda_k \to +\infty$ as $k \to +\infty$ (see Proposition 2.5 below).

In the classical case, if $X = (\partial_{x_1}, \dots, \partial_{x_n})$, then $\Delta_X^2 = \Delta^2$ is the standard bi-harmonic operator. In this case our problem is motivated from the following classical clamped plate problem, namely

$$\begin{cases} \Delta^2 u = \lambda u & \text{in } \Omega, \\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.2)

where $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2 + \dots + \partial_{x_n}^2$, $\frac{\partial u}{\partial v}$ denotes the derivative of u with respect to the outer unit normal vector v on $\partial \Omega$.

For the eigenvalues of the clamped plate problem (1.2), Agmon [1] and Pleijel [20] showed the following asymptotic formula

$$\lambda_k \sim \frac{16\pi^4}{\left(B_n vol(\Omega)\right)^{\frac{4}{n}}} \quad \text{as} \quad k \to +\infty, \tag{1.3}$$

where B_n denotes the volume of the unit ball in \mathbb{R}^n . In 1985, Levine and Protter [15] proved that

$$\frac{1}{k} \sum_{i=1}^{k} \lambda_i \ge \frac{n}{n+4} \frac{16\pi^4}{(B_n vol(\Omega))^{\frac{4}{n}}} k^{\frac{4}{n}}.$$
(1.4)