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Abstract. Metallic bowtie-shaped nanostructures are very interesting objects in op-
tics, due to their capability of localizing and enhancing electromagnetic fields in the
vicinity of their central neck. In this article, we investigate the electrostatic plasmonic
resonances of two-dimensional bowtie-shaped domains by looking at the spectrum of
their Poincaré variational operator. In particular, we show that the latter only consists
of essential spectrum and fills the whole interval [0,1]. This behavior is very different
from what occurs in the counterpart situation of a bowtie domain with only close-to-
touching wings, a case where the essential spectrum of the Poincaré variational opera-
tor is reduced to an interval σess strictly containing in [0,1]. We provide an explanation
for this difference by showing that the spectrum of the Poincaré variational operator of
bowtie-shaped domains with close-to-touching wings has eigenvalues which densify
and eventually fill the remaining parts of [0,1]\σess as the distance between the two
wings tends to zero.
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1 Introduction

Surface plasmons are strongly localized electromagnetic fields that result from electron
oscillations on the surface of metallic particles. Typically, this resonant behavior occurs
when the real parts of the dielectric coefficients of the particles are negative and when
their size is comparable to or smaller than the wavelength of the excitation. For instance,
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this is the case of gold or silver nanoparticles, 20-50nm in diameter, when they are illu-
minated in the frequency range of visible light.

The ability to confine, enhance and control electromagnetic fields in regions of space
smaller than or of the order of the excitation wavelength has stirred considerable inter-
est in surface plasmons over the last decade, as it opens the door to a large number of
applications in the domains of nanophysics, near-field microscopy, bio-sensing, nano-
lithography and quantum computing, to name a few.

A great deal of the mathematical work about plasmons has focused on the so-called
electrostatic case, where the Maxwell system is reduced to a Helmholtz equation and in
the asymptotic limit when the particle diameter is small compared to the frequency ω
of the incident wave. After proper rescaling, the study amounts to that of a conduction
equation of the form

div
(

ε(ω)−1(x)∇u(x))
)
=0, (1.1)

complemented with appropriate boundary or radiation conditions; see [6, 7] for a math-
ematical justification. The electric permittivity ε(ω) in (1.1) takes different forms in the
dielectric ambient medium and inside the particle; in the latter situation, it is usually
modeled by a Drude-Lorentz law of the form:

ε(ω)= ε0

(
1−

ω2
p

ω2+iωγ

)
,

where ε0 is the electric permittivity of the vacuum and where ωp and γ respectively de-
note the plasma frequency and the conductivity of the medium; see [6–8,27,38,39]. In the
case of metals such as gold and silver, experimental data show that, for frequencies in the
range 200−700 µm, Re(ε(ω))< 0, while the rate Im(ε(ω)) of dissipation of electrostatic
energy is small. In this context, (1.1) gets close to a two-phase conduction equation with
sign-changing coefficients and it loses its elliptic character.

In the above electrostatic approximation, the plasmonic resonances of a particle D
embedded in a homogeneous medium of permittivity ε0 are precisely associated with
values of the permittivity ε inside the particle for which (1.1) ceases to be well-posed. If
the shape of the particle is sufficiently smooth, one may represent the solution u to (1.1)
via layer potentials and then characterize plasmon resonances as values of the contrast

ε+ε0
2(ε−ε0)

which are eigenvalues of the associated Neumann-Poincaré integral operator K∗D;
see [6, 38].

Due to their key role in various physical contexts, the spectral properties of the
Neumann-Poincaré operator have been the focus of numerous investigations [2, 4, 13,
15, 16]. When the inclusion D is smooth (say with C1,α boundary), K∗D is a compact op-
erator and so its spectrum σ(K∗D) consists in a sequence of eigenvalues that accumulates
to 0 [34]. When D is merely Lipschitz, K∗D may no longer be compact and σ(K∗D) may
contain essential spectrum–a fact that has motivated several analytical and numerical


