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Abstract. In this paper we present a fully discrete A-φ finite element method to

solve Maxwell’s equations with a nonlinear degenerate boundary condition, which
represents a generalization of the classical Silver-Müller condition for a non-perfect

conductor. The relationship between the normal components of the electric field
E and the magnetic field H obeys a power-law nonlinearity of the type H × n =
n × (|E × n|α−1E × n) with α ∈ (0, 1]. We prove the existence and uniqueness of

the solutions of the proposed A-φ scheme and derive the error estimates. Finally,
we present some numerical experiments to verify the theoretical result.
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1. Introduction

We propose to study the following Maxwell’s equations

{
∂t(εE) + σE = ∇×H + J ,

∂t(µH) +∇×E = 0,
(1.1)

where E is the electric field, H is the magnetic field and J denotes the source cur-

rent term. Let Ω ⊂ R
3 be a simply-connected bounded convex polyhedron with the

boundary Γ, which consists of some conducting and nonconducting domains. Assume

that there exist N faces (Fj)j=1,··· ,N such that Γ = ∪jF j . The electric permittivity ε,
the electric conductivity σ and the magnetic permeability µ are supposed to be piece-

wise constants, and there exist constants εmin, εmax, σmax, µmin and µmax such that

0 < εmin ≤ ε ≤ εmax, 0 ≤ σ ≤ σmax and 0 < µmin ≤ µ ≤ µmax.
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The problem (1.1) is accompanied with a nonlinear boundary condition between

the normal components of E and H, which corresponds to a non-perfect contact of

different materials at the boundary. This means that the material on one side of the

boundary doesn’t allow the field to penetrate without losing the energy, which can be

described in terms of an absorbing boundary condition. In this paper, we shall consider

a power-law nonlinearity of the type

H × n = n× g(E × n) = n× (|E × n|α−1E × n), α ∈ (0, 1], (1.2)

where n stands for the outward normal vector on the boundary. Then we obtain the

following initial boundary value problem:





ε∂ttE + σ∂tE +∇×
( 1
µ
∇×E

)
= F , (x, t) ∈ Ω× (0, T ],

n×
( 1
µ
∇×E

)
= n× ∂t(|E × n|α−1E × n), (x, t) ∈ Γ× (0, T ],

E(x, 0) = E0, ∂tE(x, 0) = E′
0, x ∈ Ω.

(1.3)

For a more general function g, we have to adopt some assumptions ensuring the

monotonicity, demicontinuity and coercivity of the nonlinear operator in appropriate

function spaces. In the case when g(x) = x, (1.2) represents the classical Silver-

Müller condition, which (cf. e.g. [8,14]) is a first order approximation of the so-called

“transparent” boundary condition. Sometimes it is also called Leontovich or impedance

boundary condition (cf. e.g. [13,18]).

It is well-known that edge finite element methods and nodal finite element meth-

ods are usually used to approximate Maxwell’s equations. Edge elements address the

problem of discontinuity of the normal component of the field at the interface between

two materials and avoid the nonphysical solutions called “spurious modes”. There are

a great deal of works on numerical approximation to Maxwell’s equations and also

on the convergence analysis and error estimates. For Maxwell’s equations with per-

fectly conducting conditions, we refer readers to [6, 10–12, 19]. Numerically solving

the full Maxwell’s system with a linear Silver-Müller condition can been found in [9].

In [21, 24, 25], there have been some studies on quasi-static Maxwell’s equations with

a power-law nonlinear boundary. In [22], a mixed finite element scheme of the elec-

tric and magnetic field has been suggested for Maxwell’s equations with a power-law

nonlinear boundary condition.

To apply the nodal finite element method to solve Maxwell’s equations, some poten-

tial fields are introduced and some gauges need imposing to guarantee the uniqueness

of the potentials. The A-φ finite element method (cf. e.g. [1–4, 15–17, 20]) is to de-

compose the electric field into summation of a vector potential and the gradient of

a scalar potential, afterward to approximate the potential fields by piecewise polyno-

mial functions. The A-φ method has some advantages: First, although introducing

the vector and scalar potentials increases the number of unknowns and equations, this

seeming complication is justified by a better way of dealing with possible discontinuities
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