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Abstract. This paper provides an overview of the main ideas driving the bootstrap

algebraic multigrid methodology, including compatible relaxation and algebraic dis-
tances for defining effective coarsening strategies, the least squares method for com-

puting accurate prolongation operators and the bootstrap cycles for computing the
test vectors that are used in the least squares process. We review some recent re-

search in the development, analysis and application of bootstrap algebraic multigrid

and point to open problems in these areas. Results from our previous research as
well as some new results for some model diffusion problems with highly oscillatory

diffusion coefficient are presented to illustrate the basic components of the BAMG

algorithm.
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1. Introduction

Numerous scientific and engineering problems find their formulation in terms of

(systems) of partial differential equations, which in turn require the solution of large-

scale finite element, finite difference, or finite volume equations. Modern applications

involve large-scale parallel processing of (linear) systems with millions or even billions

of unknowns, for which multigrid (MG) methods often provide solvers that are optimal

with respect to their computational complexity and, hence, their parallel scalability.
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Multigrid solvers for sparse systems of linear equations Ax = b are all based on two

complimentary processes: a local relaxation scheme (smoother) that eliminates certain

components of the error by working on the fine level and a coarse-level correction that

treats the remaining global error.

Generally, the design and analysis of these two MG components are based on the

following smoothing property of relaxation. For any 0 < ρ < 1, an error vector e is

called ρ-smooth if all its normalized residuals† are smaller than ρ‖e‖. The basic observa-

tion [2] is that the convergence of a proper relaxation process‡ slows down only when

the current error is ρ-smooth with ρ≪ 1, the smaller the ρ the slower the convergence.

This implies that when relaxation slows down, the error vector e can be approximated

in a much lower-dimensional subspace. Very efficient “geometric multigrid” solvers have

been developed for the case that the lower-dimensional subspace corresponds to func-

tions on a well-structured grid (the coarse level), on which the smooth errors can be

approximated by easy-to-derive equations, based for example on discretizing the same

continuum operator that has given rise to the fine-level equations Ax = b to define

the coarse-level operator Ac. The coarse-level equations are solved using recursively a

similar combination of relaxation sweeps and still-coarser-level approximations to the

resulting smooth errors.

The basic two-grid method for solving Ax = b, from which a multigrid method is

defined by recursion, involves a stationary linear iterative method applied to the fine-

grid system, and a coarse-grid correction; Given an approximation w ∈ C
n, compute

an update v ∈ C
n by

1. Pre-smoothing: y = w +M(f −Aw),

2. Correction: v = y + PA−1
c R(f −Ay).

Here, M is the approximate inverse of A that defines the multigrid smoother and R :
C
n 7→ C

nc and P : Cnc 7→ C
n with nc < n are the restriction and interpolation operators

that map information between the coarse grid of size nc and the fine grid of size n.

To deal with more general situations, where the fine-level system may not be de-

fined on a well-structured grid nor perhaps arise from any continuum problem, “al-

gebraic multigrid” (AMG) methods were developed to derive the set of coarse-level

variables and coarse-level equations directly from the given matrix A. The basic ap-

proach (developed in [9,10,34] and called today “classical AMG” or RS-AMG) involves

the following two steps:

(1) Choosing the coarse-grid variables, e.g., as a subset C of the set of fine-grid vari-

ables, Ω, such that each variable in F = Ω\C is “strongly connected” to variables

in C.

†The vector of normalized residuals is Ãe, where Ã, the normalized matrix, is scaled so that the l1 norm of

each of its rows is 1. Correspondingly, we define the normalized eigenvalues of A to be the eigenvalues of

Ã. The magnitude of any normalized eigenvalue is at most 1.
‡Kaczmarz relaxation can always be used (but better schemes are often available), supplemented when

needed by local relaxation steps around exceptionally large residuals (as suggested in [1, §A.9]).
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