Numer. Math. Theor. Meth. Appl. doi: 10.4208/nmtma.2014.y12038

Simple Fourth-Degree Cubature Formulae with Few Nodes over General Product Regions

Ran Yu¹, Zhaoliang Meng^{1,*} and Zhongxuan Luo^{1,2}

Received 15 October 2012; Accepted (in revised version) 23 September 2013 Available online 16 May 2014

Abstract. A simple method is proposed for constructing fourth-degree cubature formulae over general product regions with no symmetric assumptions. The cubature formulae that are constructed contain at most n^2+7n+3 nodes and they are likely the first kind of fourth-degree cubature formulae with roughly n^2 nodes for non-symmetric integrations. Moreover, two special cases are given to reduce the number of nodes further. A theoretical upper bound for minimal number of cubature nodes is also obtained.

AMS subject classifications: 65D30, 65D32

Key words: Fourth-degree cubature formula, cubature formula, product region, non-symmetric region, numerical integration.

1. Introduction

We are interested in the integration

$$I(f) = \int_{\Omega} f(x)\rho(x)dx$$
 (1.1)

over the product region

$$\Omega = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n]$$
(1.2)

with the non-negative weight function $\rho(x)$ in the product form

$$\rho(\mathbf{x}) = \rho_1(x_1) \cdots \rho_n(x_n), \tag{1.3}$$

¹ School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, P.R. China.

² School of Software, Dalian University of Technology, Dalian, 116620, P.R. China.

^{*}Corresponding author. *Email addresses:* ranyu0602@sina.com (R. Yu), mzhl@dlut.edu.cn (Z. Meng), zxluo@dlut.edu.cn (Z. Luo)

where a_i and b_i are finite or infinite numbers. For a general smooth function f(x), such an integration is often numerically approximated by the following weighted sum

$$Q(f) = \sum_{j=1}^{N} w^{(j)} f(\mathbf{x}^{(j)}), \tag{1.4}$$

where $\boldsymbol{x}^{(j)} = \left(x_1^{(j)}, x_2^{(j)}, \cdots, x_n^{(j)}\right) \in \Omega \subset \mathbb{R}^n$ are N distinct cubature nodes for $j = 1, 2, \cdots, N$, and $w^{(j)} \in \mathbb{R}$ are cubature weights. Denote by \mathcal{P}_m^n the space of the polynomials in n variables of degree no more than m. Q(f) in (1.4) is said to be of degree m with respect to I(f), if Q(f) = I(f) for any $f \in \mathcal{P}_m^n$ and $Q(g) \neq I(g)$ for at least one $g \in \mathcal{P}_{m+1}^n$.

From the numerical points of view, people are interested in the cubature formula with a minimal number of nodes. Denote by $N_{min}^G(m,n)$ the minimal number of nodes of cubature formulae of degree m over general n-dimensional regions. Then one has the following general lower bound (see [3, Th. 9])

$$N_{\min}^{G}(m,n) \ge \dim \mathcal{P}_{\lfloor m/2 \rfloor}^{n},\tag{1.5}$$

where [x] denotes the integer part of x. This lower bound is not very sharp for $n \geq 2$ and can be improved for odd degrees as follows:

$$N_{\min}^{G}(2k+1,n) \ge \dim \mathcal{P}_{k}^{n} + \frac{\sigma_{l}}{l},\tag{1.6}$$

where, uniformly for any integer l satisfying $2 \le l \le n$, the constant

$$\sigma_l := \dim \left\{ (f_1(\boldsymbol{x}), \cdots, f_l(\boldsymbol{x})) \in \mathcal{Z}_{k+1}^l : \sum_{i=1}^l x_i f_i(\boldsymbol{x}) \in \mathcal{P}_{k+1}^n \right\}$$
$$-\dim \left\{ (f_1(\boldsymbol{x}), \cdots, f_l(\boldsymbol{x})) \in \mathcal{Z}_{k+1}^l : \sum_{i=1}^l x_i f_i(\boldsymbol{x}) \in \mathcal{Z}_{k+1} \right\},$$

and

$$\mathcal{Z}_{k+1} := \{ f(\boldsymbol{x}) \in \mathcal{P}_{k+1}^n : g(\boldsymbol{x}) \in \mathcal{P}_k^n \Rightarrow I(fg) = 0 \}.$$

See [2, 6, 7]. For centrally symmetric regions, one can get a better lower bound

$$N_{\min}^{CS}(2k+1,n) \ge 2\dim \mathcal{Q}_k^n - \begin{cases} 1, & \text{if } k \text{ is even and } \mathbf{0} \text{ is a node,} \\ 0, & \text{others,} \end{cases}$$
 (1.7)

where \mathcal{Q}^n_{2k} is the subspace of \mathcal{P}^n_{2k+1} generated by even polynomials and \mathcal{Q}^n_{2k+1} is the subspace of \mathcal{P}^n_{2k+1} generated by odd polynomials (see [7]), or explicitly (see [5])

$$N_{\min}^{CS}(2k+1,n) \ge \begin{cases} \binom{n+k}{n} + \sum_{s=1}^{n-1} 2^{s-n} \binom{s+k}{s}, & \text{if } k \text{ is odd,} \\ \binom{n+k}{n} + \sum_{s=1}^{n-1} (1-2^{s-n}) \binom{s+k-1}{s}, & \text{if } k \text{ is even.} \end{cases}$$
(1.8)