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Abstract. The z-transform is introduced to analyze a full discretization method for
a partial integro-differential equation (PIDE) with a weakly singular kernel. In this
method, spectral collocation is used for the spatial discretization, and, for the time step-
ping, the finite difference method combined with the convolution quadrature rule is
considered. The global stability and convergence properties of complete discretization
are derived and numerical experiments are reported.
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1. Introduction

We consider initial-boundary value problems of the form

ut(x, t) =

∫ t

0

β(t − s)∆u(x, s)ds+ f (x, t), (x, t) ∈ Ω× (0, T], (1.1)

where β(t) = t−1/2/Γ(1/2), which has a weak singularity at t = 0 and Ω ≡ (−1,1)2,
subject to the boundary condition

u(x, t) = 0 on ∂Ω, t > 0, (1.2)
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and the initial condition
u(x, 0) = u0 in Ω. (1.3)

Here ut(x, t) = ∂ u(x, t)/∂ t,∆ is the two-dimensional Laplacian operator, ∂Ω is the bound-
ary of the unit square Ω and β is a real-valued and positive-definite kernel, i.e., β ∈
L1,l oc(0,+∞) and satisfies

∫ T

0

∫ t

0

β(t − s)ϕ(s)dsϕ(t)d t ≥ 0, ∀T > 0, ϕ ∈ C([0, T]). (1.4)

Equations of the form (1.1) arise in problems concerned with heat conduction in mate-
rials with memory, population dynamics, viscoelasticity and theory of nuclear reactors (see
Mustapha [19–21] and reference therein). The numerical solution of problems of the type
(1.1) was studied extensively in the literature. See, for instance, Mclean and Thomée [17],
Mclean et al. [18] and Pani et al. [23, 24] for the positive-type kernels, Chen [3], Sanz-
Serna [25], López-Marcos [14], Lubich et al. [16], Mclean and Mustapha [19], Lin and
Xu [11,12], Tang [28] for weakly singular kernels, Da [31,32] for completely monotonic
kernels and Da [33] for log-convex kernels.

As we know, spectral methods have become increasingly popular and been widely used
in spatial discretization of PDEs owing to its high order of accuracy (cf. [1,2,4–7,26,29]).
Some work has been done along this line and we particularly point out that Kim and
Choi [9] proposed and analyzed a spectral collocation method for the PIDEs with a weakly
singular kernel, the spatial discretization is based on the pseudo-spectral method and the
temporal discretization by finite difference methods was considered. Lin and Xu [11]
proposed a finite difference scheme in time and Legendre spectral method in space for
fractional diffusion-wave equation. Meanwhile, Li and Xu [10] proposed a spectral method
in both temporal and spatial discretizations for this equation. In those papers [9–11], the
error bounds of discretization in time are valid only on finite time intervals and point-
wise. From a practical point of view, it is more interesting and challenging to develop and
analyze high-order methods for PIDEs in a long time period.

This paper, motivated by [30], is devoted to approximate the problems (1.1)-(1.3)
using spectral collocation in each spacial direction for the spatial discretization. Then the
resulting systems of integro-differential equations in the time variable are discretized using
backward Euler method, combined with the convolution quadrature rule, by employing a
different approach involving the z-transform with respect to time sequence, we derive the
global stability properties and associated error estimates for large T . It should be noted
that the z-transform with respect to time sequence was employed by Sanz-Serna [25]. Our
result is related to but different from [25].

The outline of this paper is as follows. In the next section, we first introduce the Sobolev
spaces on a square and then define several projection operators from Sobolev spaces onto
the space of polynomials with degree less than an integer N . In Section 3 we introduce
the z-transform of a sequence { fn}∞0 and collect some of its properties. In Section 4, we
establish stability and convergence of the full discrete scheme for (1.1). Numerical results
in Section 5 validate the theoretical prediction in Section 4.


