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Abstract. In this paper, a fast algorithm for Euler’s elastica functional is proposed, in
which the Euler’s elastica functional is reformulated as a constrained minimization prob-
lem. Combining the augmented Lagrangian method and operator splitting techniques,
the resulting saddle-point problem is solved by a serial of subproblems. To tackle the
nonlinear constraints arising in the model, a novel fixed-point-based approach is pro-
posed so that all the subproblems either is a linear problem or has a closed-form solu-
tion. We show the good performance of our approach in terms of speed and reliability
using numerous numerical examples on synthetic, real-world and medical images for
image denoising, image inpainting and image zooming problems.
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1. Introduction

Suppose that the observed image u0 is the original image u perturbed by an additive
noise η

u0 = u+η.

The image denoising problems of recovering the image u from the noisy image u0 are
often solved by variational methods and optimization techniques. Among various vari-
ational denoising methods, the Rudin-Osher-Fatemi (ROF) method [31] is probably the
most successful one, which is defined by minimizing the following functional

min
u

∫

Ω

|∇u|+
µ

2

∫

Ω

(u− u0)
2, (1.1)
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where µ is a positive parameter and u is defined on a continuous domain Ω⊂ R2.
The success of the ROF model mainly relies on the total variation (TV) regularization,

which enables the ROF model to preserve sharp edges while removing noise. Due to its
nice properties, TV-based models have been further extended to vectorial models for color
image denoising [6,13] and several fast algorithms are proposed [9–11]. In spite of many
advantageous properties, TV-based methods have a common disadvantage: piecewise con-
stant images are favored over piecewise smooth images, which is the so-called staircasing
effect. To overcome this drawback, high order models [7,8,12,14,15,24,26,32] are pro-
posed to yield smoother results. As one of them, Euler’s elastica model, which is defined
based on the curvature of the level curves of images, was first introduced into computer vi-
sion by Mumford [28] and successfully applied to a number of applications, such as image
restoration [1–3,17], image segmentation [16,27,29] and image inpainting [4,5,14].

Euler’s elastica energy can be described by the curvature κ of a smooth curve Γ as the
following

E(Γ) =

∫

Γ

�
a+ b|κ|β(s)
�
ds, (1.2)

where s is the arc length and a, b are two positive parameters. In the functional (1.2),
the first term minimizes the total length and the second term minimizes the power of total
curvature. The power β can be set to either β = 1 as in [26], or β = 2 as in [14]. In
this work, we set β = 2, but the techniques developed below can be extended to the case
β = 1 without many efforts. The Euler’s elastica of all the level curves of an image u can
be expressed as

E =

∫ L

l=0

∫

γl :u=l

�
a+ b|κ|β(s)
�
dsdl, (1.3)

where γl is the level curve with u = l. Note that the curvature κ can be expressed as a
function of u

κ(u) =∇ ·
� ∇u

|∇u|

�
. (1.4)

Substituting above equation into (1.3) and using the co-area formula yields

E(u) =

∫

Ω

�
a+ b

���∇ ·
∇u

|∇u|

���
β�
|∇u|. (1.5)

For image denoising applications, the elastica energy (1.5) can be used as a regulariza-
tion term. Together with the data fitting term, we can formulate the minimization problem
to approximate the noisy image u0 by Euler’s elastica energy as follows

min
u

∫

Ω

�
a+ b
�
∇ ·
∇u

|∇u|

�2�
|∇u|+

µ

t

∫

Ω

|u− u0|
t , (1.6)

the choice of t is determined by the type of noise in u0: e.g., t = 1 for salt & pepper noise
and t = 2 for Gaussian white noise.


