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Abstract. This paper is concerned with recovery type a posteriori error estimates of
fully discrete finite element approximation for general convex parabolic optimal control
problems with pointwise control constraints. The time discretization is based on the
backward Euler method. The state and the adjoint state are approximated by piece-
wise linear functions and the control is approximated by piecewise constant functions.
We derive the superconvergence properties of finite element solutions. By using the
superconvergence results, we obtain recovery type a posteriori error estimates. Some
numerical examples are presented to verify the theoretical results.
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1. Introduction

It is well known that finite element methods are undoubtedly the most widely used
numerical method in computing optimal control problems. A systematic introduction of
finite element methods for PDEs and optimal control problems can be found in [7, 15,
17–20, 23, 28, 32, 33]. The literature on a posteriori error estimation of finite element
method is huge. Some internationally known works can be found in [1–4,6]. Concerning
finite element methods of elliptic optimal control problems, a posteriori error estimates of
residual type were investigated in [26], a posteriori error estimates of recovery type were
derived in [21].
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For parabolic optimal control problems, a priori error estimates of space-time finite
element discretization were investigated in [29, 30], a priori error estimates of finite el-
ement methods were established in [24], and residual type a posteriori error estimates
of finite element methods were established in [27, 34]. Recently, Fu and Rui considered
a characteristic finite element approximation of control problems governed by transient
advection-diffusion equations in [16].

Superconvergence properties of finite element methods for elliptic optimal control
problems were studied in [10, 11, 31]. Yang and Chang showed the superconvergence
properties for optimal control problem of bilinear type in [35]. The superconvergence of
optimal control problems governed by Stokes equations were derived in [25]. Some super-
convergence results of mixed finite element methods for elliptic optimal control problems
can be found in [5, 8, 9, 12, 13, 36]. Recently, we discussed the superconvergence of finite
element methods for quadratic parabolic optimal control problems in [14].

The purpose of this work is to study the superconvergence and recovery type a poste-
riori error estimates of the fully discrete finite element approximation for general convex
parabolic optimal control problems with control constraints.

We are interested in the following parabolic optimal control problem:






















min
u(x ,t)∈K

(

∫ T

0

�

g(y(x , t)) + h(u(x , t))
�

d t

)

,

yt(x , t)− div(A(x)∇y(x , t)) = f (x , t) + Bu(x , t), x ∈ Ω, t ∈ J ,

y(x , t) = 0, x ∈ ∂Ω, t ∈ J ,

y(x , 0) = y0(x), x ∈ Ω,

(1.1)

where Ω be a bounded domain in R2 with a Lipschitz boundary ∂Ω, 0< T < +∞ and J =

[0, T]. g(·) and h(·) are convex functionals on L2(Ω). The coefficient A(x) = (ai j(x))2×2 ∈
(W 1,∞(Ω))2×2, such that for any ξ ∈ R2, (A(x)ξ) · ξ ≥ c | ξ |2 with c > 0. Let B be a
continuous linear operator from L2(Ω) to L2(Ω) and f (x , t) ∈ C(J ; L2(Ω)). Moreover, we
assume that g(·) is bounded below, h(u) → +∞ as ‖u‖L2(Ω) → ∞ and K is a nonempty
closed convex set in L2(J ; L2(Ω)), defined by

K =
¦

v(x , t) ∈ L2(J ; L2(Ω)) : a ≤ v(x , t)≤ b, a.e. (x , t) ∈ Ω× J
©

,

where a and b are constants.
In this paper, we adopt the standard notation W m,q(Ω) for Sobolev spaces on Ω with

norm ‖ · ‖W m,q(Ω) and seminorm | · |W m,q(Ω). We set H1
0(Ω) ≡

¦

v ∈ H1(Ω) : v|∂Ω = 0
©

and
denote W m,2(Ω) by Hm(Ω). We denote by Ls(J ; W m,q(Ω)) the Banach space of Ls integrable

functions from J into W m,q(Ω) with norm ‖v‖Ls(J ;W m,q(Ω)) = (
∫ T

0
‖v‖s

W m,q(Ω)
d t)1/s for s ∈

[1,∞) and the standard modification for s =∞. We can define the space H l(J ; W m,q(Ω)).
The details can be found in [24]. In addition, c or C denotes a generic positive constant
independent of h and ∆t.

The plan of the paper is as follows. In Section 2, we formulate the fully discrete finite
element approximation for general convex parabolic optimal control problems. In Section


