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Abstract. An elliptic optimal control problem with constraints on the state variable
is considered. The Lavrentiev-type regularization is used to treat the constraints on
the state variable. To solve the problem numerically, the multigrid for optimization
(MGOPT) technique and the collective smoothing multigrid (CSMG) are implemented.
Numerical results are reported to illustrate and compare the efficiency of both multigrid
strategies.
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1. Introduction

Different numerical techniques solve elliptic optimal control problems efficiently. Multi-
grid is considered as one of the most efficient tools for solving elliptic type problems. As ev-
idence, previous results show that multigrid solves optimal control problems with optimal
computational complexity. See for example the application of multigrid to unconstrained
optimization problems [13, 17], to optimal control problems [4, 5, 7, 12] and to inverse
problems [18, 19]. The purpose of this paper is to formulate a fast numerical technique
for solving state-constrained optimal control problems. These type of problems are very
important in different applications of optimal control of partial differential equations. We
focus on two representatives of multigrid methods for solving state-constrained optimal
control problems: the multigrid for optimization (MGOPT) technique and the collective
smoothing multigrid (CSMG). The CSMG scheme solves optimal control problems by solv-
ing the corresponding optimality system. This approach needs to customize the collective
smoothing strategy for each individual problem. Nevertheless, an appropriate design of
the CSMG components results in a robust algorithm with typical multigrid efficiency [6].
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On the other hand, the MGOPT method was first introduced in [13,17]. In this scheme the
multigrid solution process represents the outer loop where the control function is consid-
ered as the unique dependent variable. The inner loop consists of a classical one-grid opti-
mization scheme. We consider the application of these multigrid methods for solving state-
constrained elliptic optimal control problems. This work is an extension of [22], which is
the case of control-constrained elliptic optimal control problems. For the state-constrained
case, there are several well-known techniques available. Take for example the Lavrentiev-
type regularization and the Moreau-Yosida regularization, together with numerical solvers
like the interior point methods and the active set strategies [1, 2, 10, 14–16, 20, 21]. For
optimal control problems with state constraints, the corresponding Lagrange multipliers
are in general not contained in a function space but only given as measures [3, 8, 16].
In order to overcome this difficulty, a Lavrentiev-type regularization for the solution of
state-constrained optimal control problems is used. The Lagrange multipliers associated
with the regularized state constraints can be assumed to be functions in L2 [14, 16, 20].
This type of regularization procedure approximates the state constraints by mixed control-
state constraints. The solution of the regularized problem converges to the solution of the
original problem for regularization parameters tending to zero [14,16,21].

In the next sections, state-constrained optimal control problems are presented together
with the discretization scheme and a detailed description of appropriate smoothing and
optimization algorithms. In Section 4, the multigrid scheme is formulated. Numerical
experiments follow to demonstrate the ability of multigrid in solving state-constrained
optimal control problems and a section of conclusion completes this paper.

2. Constrained optimal control problems

In this section, we discuss state-constrained elliptic optimal control problems. The
corresponding optimality system is presented and the multigrid solution procedure is given
in the next section.

A state-constrained optimal control problem governed by a partial differential equation
can be formulated as follows:

min
u∈L2(Ω)

J(y,u) :=
1

2
‖y − z‖2

L2(Ω)
+
ν

2
‖u‖2

L2(Ω)
,

−∆y + F(y) + u = f in Ω,

y = 0 on ∂Ω,

y ≤ y ≤ y on ∂Ω,

(2.1)

where ν > 0 is the weight of the cost of the control, z ∈ L2(Ω) is the target function, f ∈
L2(Ω) and the function F is twice continuously differentiable and monotonically increasing
[9,15]. The bounds y and y are fixed functions in L2(Ω), where y ≤ y almost everywhere
in Ω. The existence and uniqueness of a solution to a state-constrained optimal control
problem depend on the nonlinearity and on the given constraints. See for example [9,15,
20].


