
Numer. Math. Theor. Meth. Appl. Vol. 5, No. 1, pp. 110-130

doi: 10.4208/nmtma.m12si07 February 2012

A Geometric Space-Time Multigrid Algorithm for the

Heat Equation

Tobias Weinzierl1,∗ and Tobias Köppl2

1 Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748

Garching, Germany.
2 Institut für Mathematik, Technische Universität München, Boltzmannstr. 3, 85748

Garching, Germany.

Received 29 November 2010; Accepted (in revised version) 05 May 2011

Available 21 December 2011

Abstract. We study the time-dependent heat equation on its space-time domain that

is discretised by a k-spacetree. k-spacetrees are a generalisation of the octree concept

and are a discretisation paradigm yielding a multiscale representation of dynamically

adaptive Cartesian grids with low memory footprint. The paper presents a full approx-

imation storage geometric multigrid implementation for this setting that combines the

smoothing properties of multigrid for the equation’s elliptic operator with a multiscale

solution propagation in time. While the runtime and memory overhead for tackling the

all-in-one space-time problem is bounded, the holistic approach promises to exhibit a

better parallel scalability than classical time stepping, adaptive dynamic refinement in

space and time fall naturally into place, as well as the treatment of periodic boundary

conditions of steady cycle systems, on-time computational steering is eased as the algo-

rithm delivers guesses for the solution’s long-term behaviour immediately, and, finally,

backward problems arising from the adjoint equation benefit from the the solution being

available for any point in space and time.

AMS subject classifications: 65M50, 65M55, 65N50, 65N55, 65M22

Key words: Adaptive Cartesian grids, geometric multiscale methods, heat equation, octree, space-

tree, space-time discretisation.

1. Introduction

We study the heat equation

∂tu− κ∆u = f with u : Ω× (0, T ) 7→ R, (1.1a)

u(t = 0) = u0 or u(t = 0) = u(T ) (1.1b)

u|∂Ω = g,κ ∈ R+ (1.1c)

∗Corresponding author. Email addresses: weinzier�in.tum.de (T. Weinzierl), koeppl�ma.tum.de (T.

Köppl)

http://www.global-sci.org/nmtma 110 c©2012 Global-Science Press



A Geometric Space-Time Multigrid Algorithm for the Heat Equation 111

on the unit square Ω = (0,1)d ⊂ Rd with d ∈ {1,2,3} for a fixed time interval (0, T ). f ,

g, and u0 are sufficiently smooth. The simple equation is a building block of many sophis-

ticated applications in science and engineering—ranging from nano-scale computational

fluid dynamics to chemical diffusion processes in turbulent flows. Software for this type

of problems typically discretises the time with a standard ordinary differential equation

integrator, which leads to a cascade of elliptic problems in space, and uses a sophisticated

linear equation system solver such as a geometric multigrid algorithm for the latter.

While both time integration and multigrid solver are comprehensively studied, the

problem nevertheless is far from an old-fashioned challenge. As more and more massively

parallel computers are released, the question arises how such a cascade of elliptic prob-

lems scales. Often, the size of one single elliptic subproblem is too small to exploit the full

power of all processing units. This holds in particular for coarse grid subproblems of multi-

grid algorithms. More and more cores then do not enable one to handle longer and longer

simulated time intervals in a given period due to the sequential character of the underly-

ing challenge [10,11]. Parareal-type algorithms [5] solving several spatial subproblems in

parallel promise to resolve this problem due to a good prediction for the solution’s time

behaviour. Other approaches deploy the first p subsequent time slices to the p different

nodes of a parallel computer [9, 19] and implement a chain of water carriers where the

first computing node takes over the work of the p+1th time step as soon as the initial time

step’s solution has converged. However, on massively parallel systems, some processing

units here might solve rather irrelevant equation systems. As many experimental settings

exhibit small regions of interest (boundary or interface subdomains, e.g.) dynamic adap-

tivity becomes one key ingredient of sophisticated solvers. The adaptivity in space implies

multiscale behaviour in time. Regions with small scale spatial behaviour also require an

accurate time representation. Local time stepping approaches promise to take this insight

into account. However, local time stepping makes load balancing challenging on massively

parallel computers. As more and more solvers change from stand-alone applications to

applications embedded into steering environments, coupled software component ecosys-

tems, and problem solving environments [1], today’s solvers for parabolic equations not

only have to deliver an accurate approximation of the real-world behaviour. Good guesses

of the long term behaviour have to be delivered fast to enable users and other components

to interact with the solver immediately. Smaller and smaller time step sizes required to

get better approximations however force the environment to wait longer for results. Se-

quences of computations with finer and finer time step sizes promise to deliver coarse grain

solutions on time. However, they often neglect fine scale effects stemming from the initial

conditions. As more and more challenges change from forward problems to optimisation

and calibration tasks, algorithms today often have to solve parabolic equations forward

and backward in time simultaneously [2,3]. For this, one needs a representation of the so-

lution all along the time interval. Sophisticated checkpointing strategies promise to deliver

such snapshots of the solution at any time for a fair trade-off between computing resources

and storage requirements [2]. However, with less and less memory per core available, it is

not clear how these approaches scale on supercomputers—in particular for d = 3, where a

full, regularly resolved space-time grid already reveals the curse of dimension [8]. Placed


