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Abstract. This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-

Galerkin approaches for the second kind Volterra integro-differential equations. The

Gauss-Legendre quadrature formula is used to approximate the integral operator and

the inner product based on the Jacobi weight is implemented in the weak formulation

in the numerical implementation. For some spectral and pseudo-spectral Jacobi-Petrov-

Galerkin methods, a rigorous error analysis in both L2

ωα,β and L∞ norms is given pro-

vided that both the kernel function and the source function are sufficiently smooth.

Numerical experiments validate the theoretical prediction.
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1. Introduction

This paper is concerned with the following second-kind Volterra integro-differential

equation with initial condition, i.e.,





u′(x)+
∫ x

−1

k(x , s)u(s)ds = g(x), x ∈ [−1,1],

u(−1) = 0,

(1.1)

where the kernel function k(x , s) and the source function g(x) are given smooth functions,

u(x) is the unknown function.
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Actually any second-kind Volterra integro-differential equation with smooth kernel and

initial condition can be transformed into (1.1) by a simple linear transformation used

in [12]. As a result, our approach can be generalized to the second-kind Volterra integro-

differential equations with initial condition defined in any interval, where the kernel is

smooth. We will consider the case that the solutions of (1.1) are sufficiently smooth. Con-

sequently it is natural to implement very high-order numerical methods such as spectral

methods for the solutions of (1.1). It is known that there are many numerical approaches

for solving (1.1), such as collocation methods, finite element methods, see, e.g., [1] and

references therein. Nevertheless, few works touched the spectral approximations to (1.1).

In [9], Chebyshev spectral methods are proposed to solve nonlinear Volterra-Hammerstein

integral equations. Then Chebyshev spectral methods are investigated in [10] for the first

kind Fredholm integral equations under multiple-precision arithmetic. Nevertheless, no

theoretical results are provided to justify the high accuracy numerically obtained. Some

efforts are made to implement the spectral methods to solve the second-kind Volterra in-

tegral equations. In [14], a spectral method is suggested, but spectral accuracy is not

observed for most of the computations. Tang and Xu in [12] develop a novel spectral

Legendre-collocation method. Actually this is the first spectral approach for which the

spectral accuracy can be justified both theoretically and numerically. Inspired by the work

in [12], Chen and Tang [4] implement the spectral Chebyshev-collocation method to solve

the second kind Volterra integral equation with weakly singular kernel (t − s)−
1

2 k(t, s),

where k(t, s) is a smooth function. Then they [5] extend the approach in [4] to the second

kind Volterra integral equation with more general weakly singular kernel (t − s)αk(t, s),

where −1 < α ≤ 0 and k(t, s) is a smooth function. The spectral accuracy of these ap-

proaches is verified both theoretically and numerically in [4] and [5]. Xie and Tang [7]

develop spectral and pseudo-spectral Galerkin methods based on the general Jacobi weight

to solve the second-kind Volterra integral equation. They give a rigorous proof of the spec-

tral convergence in L2

ωα,β and L∞ norms. Actually, the success of the spectral method for

the second-kind Volterra integral equations is the main motivation for our work in the

second-kind integro-differential equations.

Unlike the standard spectral and pseudo-spectral Galerkin methods, the spectral and

pseudo-spectral Petrov-Galerkin methods allow the trial and test function spaces to be

different. Lin et.al, in [8] introduce the Petrov-Galerkin finite element (PGFE) method

for Volterra integro-differential equations. It is proved that the PGFE solution uh and its

derivative u′
h

have optimal convergence rates O (hm+1) and O (hm) in L∞ norm, respec-

tively. After using some postprocessing techniques, the convergence rate of uh reaches

O (h2m) at the nodes of the mesh. Tang [13] discusses the collocation method to solve

the first-order Volterra integro-differential equation with a singular kernel function (t −
s)−αk(t, s,u(s))(0 < α < 1). For grading exponents r > m

2−α of the graded mesh, the

collocation solution has the convergence rate O (N−m) in L∞ norm. Besides, Brunner,

et.al, in [2] present the hp−discontinuous Galerkin method for Volterra integro-differential

equations with singular kernels. It is proved both theoretically and numerically that the

DG solution based on geometrically graded meshes has the exponential convergence rate

in L2 and L∞ norms. Inspired by these works, we will show that both spectral and pseudo-


