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Abstract. We develop and analyze an adaptive hybridized Interior Penalty Discontinu-
ous Galerkin (IPDG-H) method for H(curl)-elliptic boundary value problems in 2D or
3D arising from a semi-discretization of the eddy currents equations. The method can be
derived from a mixed formulation of the given boundary value problem and involves a
Lagrange multiplier that is an approximation of the tangential traces of the primal vari-
able on the interfaces of the underlying triangulation of the computational domain. It is
shown that the IPDG-H technique can be equivalently formulated and thus implemented
as a mortar method. The mesh adaptation is based on a residual-type a posteriori er-
ror estimator consisting of element and face residuals. Within a unified framework for
adaptive finite element methods, we prove the reliability of the estimator up to a consis-
tency error. The performance of the adaptive symmetric IPDG-H method is documented
by numerical results for representative test examples in 2D.
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1. Introduction

Discontinuous Galerkin (DG) methods are widely used algorithmic schemes for the nu-
merical solution of partial differential equations (PDE). For a comprehensive description,
we refer to the survey article [24] and the references therein. As far as elliptic bound-
ary value problems are concerned, DG methods can be derived from a primal-dual mixed
formulation using local approximations of the primal and dual variables by polynomial
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scalar and vector-valued functions and appropriately designed numerical fluxes. Among
the most popular schemes are Interior Penalty DG (IPDG) and Local DG (LDG) meth-
ods which have been analyzed by means of a priori estimates of the global discretization,
e.g., in [3, 5, 23, 39]. For H(curl)-elliptic boundary value problems arising from a semi-
discretization of the eddy currents equations, symmetric IPDG methods have been studied
in [36]. The time-harmonic Maxwell equations have been addressed in [46].

On the other hand, the a posteriori error analysis and application of adaptive finite ele-
ment methods (FEM) for the efficient numerical solution of boundary and initial-boundary
value problems for PDE has reached some state of maturity as documented by a series of
monographs. There exist several concepts including residual and hierarchical type estima-
tors, error estimators that are based on local averaging, the so-called goal oriented dual
weighted approach, and functional type error majorants (cf. [2,6,7,30,44,49] and the ref-
erences therein). A posteriori error estimators for DG methods applied to second order el-
liptic boundary value problems have been developed and analyzed in [1,11,18,38,40,47].
In particular, a convergence analysis of adaptive symmetric IPDG methods has been pro-
vided in [12,34] and [41]. Residual- and hierarchical-type a posteriori error estimator for
H(curl)-elliptic problems have been studied in [8–10, 20, 37]. A convergence analysis for
residual estimators has been developed in [19] for 2D and in [35] for 3D problems.

From a computational point of view, DG methods suffer from a relatively huge amount
of globally coupled degrees of freedom (DOF) compared to standard FEM. Hybridization is
a technique that gives rise to a significant reduction of the globally coupled DOF. It has been
introduced for mixed FEM in [31] and further studied in [4,13,15,25,26]. Adaptive mixed
hybrid methods on the basis of reliable a posteriori error estimators have been considered
in [14, 45] and [50]. For DG methods, a survey of hybridized DG (DG-H) methods has
been provided in [26], whereas a unified analysis has been developed in [28]. However,
adaptive DG-H methods have not yet been investigated.

In this paper, we will derive and analyze a residual-type a posteriori error estimator
for hybridized symmetric IPDG (IPDG-H) methods applied to H(curl)-elliptic boundary
value problems in 3D. The analysis will be carried out within a unified framework pro-
vided for adaptive finite element approximations in [17, 18, 20–22]. The paper is orga-
nized as follows: In Section 2, we introduce some basic notation and present the class of
H(curl)-elliptic boundary value problems to be approximated by symmetric IPDG-H meth-
ods. Section 3 deals with the development of symmetric IPDG-H methods based on a
mixed formulation of the elliptic boundary value problems. We establish its relationship
with mortar techniques which allows the implementation as a mortar method. In section
4, we present the residual-type a posteriori error estimator and prove its reliability. Finally,
in section 5, we provide a detailed documentation of numerical results to illustrate the
performance of the symmetric IPDG-H methods.

2. Basic notations

Let Ω⊂ R3 be a simply connected polyhedral domain with boundary Γ = ∂Ω such that
Γ = ΓD∪ΓN ,ΓD∩ΓN = ;. We denote by D(Ω) the space of all infinitely often differentiable


