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Abstract. This paper presents alternating direction finite volume element methods for
three-dimensional parabolic partial differential equations and gives four computational
schemes, one is analogous to Douglas finite difference scheme with second-order split-
ting error, the other two schemes have third-order splitting error, and the last one is an
extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained
for the first scheme and second one, respectively. Finally, two numerical examples are
provided to illustrate the efficiency and accuracy of the methods.
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1. Introduction

Finite volume element methods (FVEMs) [1–3] or generalized difference methods [4]
discretize the integral form of conservation laws of differential equation by choosing linear
or high order finite element space as the trial space. The method lies in between finite ele-
ment method and finite difference method in concept and implementation. In recent years,
some literature focused on the error estimates of finite volume element methods, espe-
cially for two dimensional problems, see the references [5–13]. Recently, the author [14]
combines finite volume element methods and alternating direction methods for two di-
mensional parabolic differential equations and presents some alternating direction finite
volume element schemes. Here, we further extend the method to three-dimensional par-
tial differential equations. As an efficient technique, alternating direction method [15,16]
successfully converts multidimensional problems to a collection of one dimensional prob-
lems, which can be solved very easily. Because ADI finite difference methods and alternat-
ing direction finite element methods are unconditionally stable and highly efficient, they
have been applied in many areas of applied sciences [17,18]. It is worth mentioning that
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Professor Douglas et al. [16] presented an LOD finite difference scheme with third-order
perturbation term. In this paper, we write the finite volume element method as tensor
product form by perturbing the differential equations, so we can convert the method to a
series of one dimensional problems. We give four kinds of alternating direction schemes,
the first one is similar to Douglas scheme [15] with second-order splitting error, the second
and third are also Douglas schemes with third order splitting error [16]. The last one is
an extended locally one dimensional (LOD) scheme [19]. It is worth mentioning that the
LOD scheme in this paper completely decomposes multidimensional problems to a collec-
tion of one dimensional problems and the method is valid for nonhomogeneous differential
equations with nonhomogeneous boundary conditions.

The remainder of the article is outlined as follows. In Section 2, we obtain a class
of finite volume element method with tensor product form by perturbing the differential
equation. We present four kinds of computation schemes. In Section 3, taking the fist
scheme and the second one as two examples, we further analyze these schemes. By defin-
ing discrete L2 norm and H1 semi-norm, we obtain L2 norm and H1 semi-norm error
estimates for the first scheme and the second one. Finally, in Section 4, we provides two
numerical examples to illustrate the effectiveness of the four schemes.

Throughout the article C will denote a generic (sometimes large) constant and ε a
generic small one independent of mesh-size h, where C and ε can have different values in
different places.

2. Alternating direction FVEM for 3D parabolic equations

Consider the following three-dimensional parabolic problem on domain Ω = [0,1]3

∂ u

∂ t
−∆u = f (x , y, z, t), (x , y, z) ∈ Ω, t ∈ (0, T], (2.1)

u|∂Ω = 0, u(x , y, z, 0) = u0(x , y, z), (2.2)

where f (x , y, z, t) is sufficiently smooth.
First, give a cuboidal partition Qh for Ω and the nodes are denoted by (x i, y j , zk),

i( j, k) = 0,1, · · · , Nx(Ny , Nz). Let
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