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Abstract. The gas-kinetic theory based flux splitting method has been successfully pro-
posed for solving one- and two-dimensional ideal magnetohydrodynamics by Xu et al.
[J. Comput. Phys., 1999; 2000], respectively. This paper extends the kinetic method
to solve three-dimensional ideal magnetohydrodynamics equations, where an adaptive
parameter η is used to control the numerical dissipation in the flux splitting method.
Several numerical examples are given to demonstrate that the proposed method can
achieve high numerical accuracy and resolve strong discontinuous waves in three di-
mensional ideal MHD problems.
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1. Introduction

The ideal magnetohydrodynamics (MHD) equations are very important in modeling
many flow phenomena in astrophysics, space weather, laboratory plasmas, and solar physics
etc. Various high-resolution schemes have been developed for the MHD equations in the
past two decades. For example, approximate Riemann solvers based on seven or eight
waves eigensystems were widely used, see, e.g., [2–5, 8, 11, 16–18, 20, 23, 25, 34]. Tóth
and Odstrcil in [27,28] presented comparisons of some flux corrected transport and total
variation diminishing (TVD) schemes as well as various constrained transport methods for
the MHD problems. Recently, Han and Tang [13, 14] constructed a divergence-free mov-
ing mesh method for two-dimensional ideal MHD system as well as shallow-water MHD
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system based on the reconstruction of the magnetic potential. Due to the non-strictly hy-
perbolicity of the MHD system, considerable work is required for the validation of the MHD
eigensystem. Based on the particle transport mechanism, Croisille et al. and Xu et al. con-
structed gas-kinetic MHD solvers [10,26,31]. Because of the simplicity of the kinetic flux
functions, the efficiency becomes one of the advantages in the kinetic approach.

The aim of this paper is to develop a higher-order kinetic BGK scheme for three-
dimensional magnetohydrodynamics. The mainly difficulty in multidimensional MHD cal-
culations is to handle the divergence-free constraint for the magnetic field ~B, i.e. ∇· ~B = 0.
Violating this constraint leads to nonphysical plasma transport orthogonal to the magnetic
field. Up to now, there are several popular approaches to enforce this condition. The first
approach is the projection method of Brackbill and Barnes [7]. In order to impose the
divergence free condition for the magnetic field ~B, a correction method is enforced in solv-
ing the Poisson equation for the scalar potential φ, such as ∇2φ +∇ ·B = 0, to obtain the
corrected magnetic field Bc through Bc = B+∇φ, where Bc becomes a divergence-free
field and will be used in the next time step. This technique is commonly used in many
MHD solvers [7,15,26,33]. However, in general, the Poisson solver is time consuming on
an unstructured mesh or in curvilinear coordinates; and conservation of the total energy
may slightly be lost.

The second approach is the eight-wave formulation of the MHD equations suggested by
Powell and Aslan [1,19], who added source terms, which are proportional to the magnetic
divergence, to the right hand side of the momentum and total energy equations in the
ideal MHD system, respectively. The main disadvantage of this approach is that the 8-wave
formulation of the MHD equations becomes non-conservative so that incorrect results may
be produced in problems containing strong shocks [27].

The third approach is the constrained transport (CT) method of Evans and Hawley
[12], in which a particular finite difference method was constructed on a staggered mesh,
maintaining a specific discretization of ∇ · ~B. Because of its simplicity, this approach be-
comes rather popular in recent years, see, e.g., [6, 11, 22]. Tóth [27] introduced a finite-
volume interpretation of the CT schemes that place all of the variables at the cell center.
However, the idea seems to be difficult to apply to an adaptive mesh (refinement mesh
or moving mesh). It is worth noting that most of the existing CT methods are designed
on a rectangle or cubic mesh. Another way to keep the magnetic field divergence-free is
to directly solve the magnetic potential equations instead of the induction equation in the
ideal MHD system, see [9, 12, 21]. The disadvantage of this approach is that the order of
spatial derivatives increases by one, which reduces the order of accuracy by one.

The paper is organized as follows. Section 2 introduces the governing equations for the
three-dimensional ideal MHDs. Section 3 develops a higher-order kinetic BGK scheme for
three-dimensional magnetohydrodynamics. The adjust parameter η is adaptively defined
in the BGK scheme. We correct the magnetic field of the base MHD solver by the projection
method. Numerical experiments are carried out in Sections 4 on two benchmark exam-
ples, which are the spherical explosion problem and the spherical cloud and shock wave
interaction problem. Finally, we conclude this work by giving a few remarks in Section 5.


