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Abstract. Several cubature formulas on the cubic domains are derived using the dis-

crete Fourier analysis associated with lattice tiling, as developed in [10]. The main

results consist of a new derivation of the Gaussian type cubature for the product Cheby-

shev weight functions and associated interpolation polynomials on [−1,1]2, as well as

new results on [−1,1]3. In particular, compact formulas for the fundamental interpo-

lation polynomials are derived, based on n3/4+ O (n2) nodes of a cubature formula on

[−1,1]3.
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1. Introduction

For a given weight function W supported on a set Ω ∈ Rd , a cubature formula of degree

2n− 1 is a finite sum, Ln f , that provides an approximation to the integral and preserves

polynomials of degree up to 2n− 1; that is,

∫

Ω

f (x)W(x)d x =

N∑

k=1

λk f (xk) =: Ln f , ∀ f ∈ Πd
2n−1,

where Πd
n denotes the space of polynomials of total degree at most n in d variables. The

points xk ∈ R
d are called nodes and the numbers λk ∈ R \ {0} are called weights of the

cubature.

Our primary interests are Gaussian type cubature, which has minimal or nearer min-

imal number of nodes. For d = 1, it is well known that Gaussian quadrature of degree

2n−1 needs merely N = n nodes and these nodes are precisely the zeros of the orthogonal

polynomial of degree n with respect to W . The situation for d > 1, however, is much more
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complicated and not well understood in general. As in the case of d = 1 for which a cuba-

ture of degree 2n−1 needs at least n nodes, the cubature of degree 2n−1 for d ≥ 1 needs

N ≥ dimΠd
n−1 number of nodes, but few formulas are known to attain this lower bound

(see, e.g., [1, 10]). In fact, for the centrally symmetric weight function (symmetric with

respect to the origin), it is known that the number of nodes, N , of a cubature of degree

2n− 1 in two dimension satisfies the lower bound

N ≥ dimΠ2
n−1 +

�
n

2

�
, (1.1)

known as Möller’s lower bound [11]. It is also known that the nodes of a cubature that

attains the lower bound (1.1), if it exists, are necessarily the common zeros of n + 1 −
⌊ n

2
⌋ orthogonal polynomials of degree n with respect to W . Similar statements on the

nodes hold for cubature formulas that have number of nodes slightly above Möller’s lower

bound, which we shall call cubature of Gaussian type. These definitions also hold in d-

dimension, where the lower bound for the number of nodes for the centrally symmetric

weight function is given in [12].

There are, however, only a few examples of such formulas that are explicitly con-

structed and fewer still can be useful for practical computation. The best known example

is Ω = [−1,1]d with the weight function

W0(x) :=

d∏

i=1

1
p

1− x2
i

or W1(x) :=

d∏

i=1

Æ
1− x2

i
(1.2)

and only when d = 2. In this case, several families of Gaussian type cubature are explicitly

known, they were constructed ( [13,17]) by studying the common zeros of corresponding

orthogonal polynomials, which are product Chebyshev polynomials of the first kind and

the second kind, respectively. Furthermore, interpolation polynomial bases on the nodes of

these cubature formulas turn out to possess several desirable features ( [18], and also [5]).

On the other hand, studying common zeros of orthogonal polynomials of several variables

is in general notoriously difficult. In the case of (1.2), the product Chebyshev polynomials

have the simplest structure among all orthogonal polynomials, which permits us to study

their common zeros and construct cubature formulas in the case d = 2, but not yet for the

case d = 3 or higher.

The purpose of the present paper is to provide a completely different method for con-

structing cubature formulas with respect to W0 and W1. It uses the discrete Fourier anal-

ysis associated with lattice tiling, developed recently in [10]. This method has been used

in [10] to establish cubature for trigonometric functions on the regular hexagon and trian-

gle in R2, a topic that has been studied in [15,16], and on the rhombic dodecahedron and

tetrahedron of R3 in [9]. The cubature on the hexagon can be transformed, by symmetry,

to a cubature on the equilateral triangle that generates the hexagon by reflection, which

can in turn be further transformed, by a nontrivial change of variables, to Gaussian cuba-

ture formula for algebraic polynomials on the domain bounded by Steiner’s hypercycloid.

The theory developed in [10] uses two lattices, one determines the domain of integral and


