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Abstract. The paper is concerned with strongly nonlinear singularly perturbed bound-

ary value problems in one dimension. The problems are solved numerically by finite-

difference schemes on special meshes which are dense in the boundary layers. The

Bakhvalov mesh and a special piecewise equidistant mesh are analyzed. For the central

scheme, error estimates are derived in a discrete L1 norm. They are of second order

and decrease together with the perturbation parameter ǫ. The fourth-order Numerov

scheme and the Shishkin mesh are also tested numerically. Numerical results show

ǫ-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.
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1. Introduction

We consider the following singularly perturbed boundary value problem:

−ǫ2(k(u)u′)′+ c(x ,u) = 0, x ∈ I := [0,1], u(0) = α, u(1) = β , (1.1)

where ǫ is a small positive parameter, α and β are given constants, and the functions k

and c are sufficiently smooth and satisfy

k∗ ≥ k(u)≥ k∗ > 0, cu(x ,u)≥ c∗ > 0, x ∈ I , u ∈ R. (1.2)

This problem has a unique solution, uǫ, for which the following estimates hold true:

|u( j)ǫ (x)| ≤ M
�

1+ ǫ− je−γx/ǫ + ǫ− jeγ(x−1)/ǫ
�

, x ∈ I , j = 0,1,2,3,4, (1.3)
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with a constant γ in the interval (0,
p

c∗/k∗). Here and throughout the paper, M is a

generic positive constant independent of ǫ. Thus, estimates (1.3) show that the solution

has in general two boundary layers whose width is O
�

ǫ ln 1

ǫ

�

. This result can be proved

as follows. For K(u) =
∫ u

k(s) ds, it holds that Ku(u)≥ k∗ > 0, so the inverse function K−1

exists. We can therefore introduce the substitution v = K(u) to transform (1.1) to

−ǫ2v′′+ g(x , v) = 0, x ∈ I , v(0) = K(α), v(1) = K(β), (1.4)

where g(x , v) = c(x , K−1(v)). Then from gv(x , v) = cu(x , K−1(v))/k(u), we get that

gv(x , v) > γ2. This implies that problem (1.4) has a unique solution, vǫ, and it is well

known that its derivatives can be estimated by the right-hand side of (1.3). These esti-

mates immediately transfer to uǫ.

Problems similar to (1.1), as well as the more general ones with k = k(x ,u), arise

in applications to chemistry as models of catalytic reactions accompanied by a change in

volume [3,14,17,19]. Some numerical methods for those problems have been considered

in [14, 17], but no complete error-analysis has been given. This is finally done in the

present paper. The special case k(u) ≡ 1 describes the standard reaction-diffusion problem

which has been discussed very often. Earlier papers, like [2, 13], typically consider the

condition cu(x ,u) ≥ c∗ > 0, which is also assumed here. This condition is relaxed in

[7,8,12,15]. Of other more recent papers on numerical methods for singularly perturbed

semilinear reaction-diffusion problems, let us mention [5] and [6]. These papers deal with

a posteriori error estimates in the maximum norm; paper [6] is a 2D generalization of [5].

The numerical method proposed by Wang [18] for (1.1) in the non-perturbed case

ǫ = 1 is the fourth-order Numerov scheme applied to (1.4). Wang considers the situation

when K−1 can be found explicitly. Since this is not always easy to do, we discretize here

the original problem after rewriting the differential equation in (1.1) as

−ǫ2K(u)′′ + c(x ,u) = 0. (1.5)

The method we discuss in detail is the central finite-difference scheme applied on meshes of

Bakhvalov and piecewise equidistant types. It is well known in the semilinear case k(u)≡ 1

that the central scheme is ǫ-uniformly stable in the maximum norm. Here, because of the

strong nonlinearity of the problem, it is much easier to use a discrete L1 norm to prove

stability uniform in ǫ. Stability of finite-difference approximations of quasilinear singular

perturbation problems is often proved in this norm, see [1] for instance. Solutions of such

problems may have interior layers with a priori unknown locations. This is not the case in

the present problem, but, in addition to the strong nonlinearity, there is another reason for

using the L1 norm. If w(x) = exp(−γx/ǫ) is the exponential boundary-layer function, then

‖w‖1 is of order ǫ, thus small values of ǫ increase accuracy in L1 norm. Such higher L1-

accuracy is important in the catalytic-reaction applications when calculating the so-called

efficiency factor, see [17].

ǫ-uniform stability in L1 norm implies convergence results in the same norm, the errors

being estimated by

EB := MN−2
�

ǫ+ e−mN
�

on the Bakhvalov mesh (1.6)


