
NUMERICAL MATHEMATICS: Theory, Methods and Applications

Numer. Math. Theor. Meth. Appl., Vol. 1, No. 1, pp. 92-112 (2008)

A Multigrid Block LU-SGS Algorithm for Euler

Equations on Unstructured Grids

Ruo Li1,∗, Xin Wang2 and Weibo Zhao1

1 LMAM & School of Mathematical Sciences, Peking University, Beijing, China.
2 LMAM, CCSE & School of Mathematical Sciences, Peking University, Beijing,

China.

Received 21 January, 2007; Accepted (in revised version) 28 November, 2007

Abstract. We propose an efficient and robust algorithm to solve the steady Euler equa-

tions on unstructured grids. The new algorithm is a Newton-iteration method in which

each iteration step is a linear multigrid method using block lower-upper symmetric

Gauss-Seidel (LU-SGS) iteration as its smoother. To regularize the Jacobian matrix of

Newton-iteration, we adopted a local residual dependent regularization as the replace-

ment of the standard time-stepping relaxation technique based on the local CFL number.

The proposed method can be extended to high order approximations and three spatial

dimensions in a nature way. The solver was tested on a sequence of benchmark prob-

lems on both quasi-uniform and local adaptive meshes. The numerical results illustrated

the efficiency and robustness of our algorithm.
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1. Introduction

In the last decades, one of the most active research areas in computational aerodynam-

ics has been concerned with the numerical simulation of the complex flow field of aircrafts

with practical configuration. Nowadays its rapid development and daily improvement play

an important part in accelerating the revolution of aerofoil designing strategies and meth-

ods. Because of the hyperbolic nature of Euler equations in the subsonic, transonic and

supersonic regimes, many numerical schemes can be chosen to solve the unsteady Euler

equations. The finite volume method [11] is one of the most widely used schemes. The

nonlinear algebraic system obtained from the finite volume discretization of Euler equa-

tions was often solved by certain Newton-iteration. It is a main challenge to develop

efficient and robust iterative algorithms for solving the nonlinear algebraic system, espe-

cially on unstructured grids. In spite of the difficulties of this problem, remarkable progress
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has been made. The solver developed by Jameson, with a series of customized numerical

techniques including multigrid acceleration, local time stepping, implicit residual smooth-

ing and enthalpy damping, on structured grids demonstrated great efficiency with a lot

of impressive numerical examples [6–8, 10, 11]. Such highly nonlinear system can now

be solved with residual convergent to machine accuracy on current desktop computers

within minutes. Among these acceleration techniques, the local preconditioning can be

quite effective [13, 14], too, with a judiciously chosen precondition matrix. For the sys-

tem discretized on unstructured grids, the implicit LU-SGS iterative algorithm has been

extensively adopted since it was first introduced by Jameson and Turkel [12]. The LU-SGS

method was used as a relaxation method for solving the unfactorized implicit scheme by

Yoon and Jameson [22–24]. It was further developed and applied to 3D viscous flow fields

by Riger and Jameson [17]. Since then, many authors have applied the LU-SGS method to

viscous flows on both structured and unstructured grids [2,4,18,25]. Noticing the special

formation of the equations, it is more appropriate to solve the linearized Jacobian matrix

block by block. Therefore as a further development of the LU-SGS iteration, Wang [5]

proposed a block LU-SGS method together with some numerical examples, converged at a

satisfactory speed as expected.

In this paper, we developed a multigrid solver using the block LU-SGS iteration as its

smoother. On the unstructured grids, we first discretized the steady Euler equations to

obtain the nonlinear algebraic system. Then the nonlinear system was linearized with the

standard Newton-iteration. It is popular to regularize the linearized system by adding a

local artificial time relaxation. The weight of this time relaxation term was calculated dy-

namically using a local CFL number. This CFL number is different from the CFL number

used in solving a time-dependent conservation law. For a time-dependent conservation

law, the essential role of the CFL number is to keep the stability of the numerical schemes.

Therefore, it is an O (1) number to make the time stepping length to be the ratio of the typ-

ical mesh size and the maximal wave propagation speed. As one of the basic differences in

solving the steady Euler equations, the intermediate state of the solution is out of the main

concerns. Only if the iterative algorithm can converge, the CFL number can be chosen as

large as possible to achieve a faster convergence rate. Generally, the CFL number should be

about O (1) at the beginning of the iteration as a bootstrap of the total algorithm, and then

it can be dynamically increased for better efficiency. A balance between the magnitude of

the CFL number and the convergence of the iteration is generally required by maximiz-

ing the total convergence rate. Based on such a understanding of the local CFL number

choosing strategy, we will not use the standard regularization in which a local artificial

time relaxation term is added into the Jacobian matrix of the Newton-iteration. Instead,

we used a residual related regularization,i.e. α‖RHS‖l1 , where RHS is the residual of the

linearized system on each grid cell. The magnitude of the cell residual can locally quantify

how close to the steady state the flow field is. Therefore it is quite natural to require the

local CFL number to be dependent on the local residual. Due to the same scaling between

a norm of the local residual and local grid cell size, the regularization term can be simply

set as a constant times of a norm of the local residual. With this local residual dependent

regularization, our algorithm can automatically choose a moderate local CFL number so as


