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Abstract. In this paper, we discuss the weak Galerkin (WG) finite element method for
the obstacle problem and the second kind of the elliptic variational inequality. We use
piecewise linear functions to approximate the exact solutions. The WG schemes for the
first and the second kind of elliptic variational inequality are established and the well-
posedness of the two schemes are proved. Furthermore, we can obtain the optimal order
estimates in H1 norm. Finally, some numerical examples are presented to confirm the
theoretical analysis.

AMS subject classifications: 65N30, 65N12, 35J85, 51M16, 26A27
Key words: Obstacle problem, the second kind of elliptic variational inequality, weak Galerkin finite
element method, discrete weak gradient.

1. Introduction

Variational inequalities play an important role in nonlinear problems. They have appli-
cations not only in mathematics, such as nonlinear optimizations and cybernetics [29,46],
but also in other fields such as mechanics [7, 35], engineering [15, 22], and economics
[16, 47]. For instance, in [13], when studying frictionless between linear elastomers and
rigid bodies, Signorini proposed the so called Signorini problem [4, 9, 13], which was one
of the earliest work involving variational inequalities. However, the rigorous mathematical
theory of the variational inequality was not established until about three decades later [28].

Variational inequalities can roughly be divided into three categories: the elliptic varia-
tional inequality (EVI) [3, 27], the parabolic variational inequality (PVI) [14, 24] and the
hyperbolic variational inequality (HVI) [30]. This paper focuses on the elliptic variational
inequality. A variety of numerical methods have been developed for this problem, such as
relaxation method [18], multigrid method [23–26,40], multilevel projection method [49]
and so on. In addition, the discontinuous Galerkin method is also used to study variational
inequalities because of its flexibility and high efficiency. The relevant work and results have
been detailed in [2,10,11].
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In this paper, we use weak Galerkin (WG) finite element method to solve elliptic varia-
tional inequalities. The WG finite element method was first proposed for the second order
elliptic problem by Wang and Ye in [42]. The method has the following characteristics.
First, the exact solution is approximated by the weak function. The weak function has
the form v = {v0, vb}, where v0 denotes the interior of each element, and vb denotes the
boundary of the corresponding element. vb is not necessarily related to the trace of v0.
Second, the key idea of WG method is the definition of weak differential operators which
replaces the classical differential operators. Finally, the finite element partition can be
arbitrary shape of polygons in two dimensional space or polyhedra in three dimensional
space. These features make the WG method more flexible. Therefore, WG method has
been used to solve different types of partial differential problems, such as Stokes equa-
tion [32, 39, 44, 51, 53], Navier-Stokes equations [56], elasticity problem [38], Brinkman
equation [45,57], biharmonic equation [31,54], Diffusion Equations [52], Maxwell equa-
tion [33], parabolic equation [55], elliptic interface [12] and so on.

As far as the variational inequality, the WG method for the first kind of the elliptic varia-
tional inequality was considered in [20]. The authors gave the rigorous and complete theo-
retical analysis of the obstacle problem. Due to the use of the local BDMk elements [6], the
WG finite element was limit to be triangular or tetrahedral. In addition, a modified weak
Galerkin method (MWG) was introduced to deal with the obstacle problem and the Sig-
norini problem in [50]. In MWG method, the boundary part of the weak function is replaced
by the average of the internal part. For more details, readers may refer to [21,32,37,41].
As for the second kind of the elliptic variational inequality, to the best of our knowledge,
there exists no corresponding work for solving this problem with the WG method.

In this paper, we introduce the WG method based on [43] for the obstacle problem. By
applying a stabilization idea, the mesh is extended to allow arbitrary polygons, which is
different from the recently work in [20]. In addition, we shall make an initial effort for the
second kind of the variational inequality with the WG method.

This paper is organized as follows: In Section 2, we give some preliminary knowledge
for subsequent analysis and proof. In Section 3, we introduce the obstacle problem and
relevant features, then we establish the WG scheme of the obstacle problem and obtain the
optimal order error estimate in H1 norm. As for the second kind of the elliptic variational
inequality, in Section 4, we present the general form of the problem and relevant features,
WG scheme and error estimate in H1 norm are also derived. In Section 5, we provide some
numerical examples of the two problems, which confirm the theoretical analysis and further
explain the effectiveness of the WG method.

2. Preliminary

For convenience, we first give some notations and inequalities which will be used through-
out the rest of the paper. We use standard notations of Sobolev space [1]. Let D be an
open bounded domain with Lipschitz continuous boundary in Rd (d = 2, 3). The internal
product of Hs(D) is denoted by (·, ·)s,D and the boundary product is denoted by 〈·, ·〉s,∂ D.
Notations ‖·‖s,D and | · |s,D represent the norm and semi-norm in Hs(D), respectively, where


