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Abstract. The second and all higher order moments of the β -stable Lévy process di-
verge, the feature of which is sometimes referred to as shortcoming of the model when
applied to physical processes. So, a parameter λ is introduced to exponentially temper
the Lévy process. The generator of the new process is tempered fractional Laplacian
(∆+ λ)β/2 [W. H. Deng, B. Y. Li, W. Y. Tian and P. W. Zhang, Multiscale Model. Simul.,
16(1), 125-149, 2018]. In this paper, we first design the finite difference schemes for the
tempered fractional Laplacian equation with the generalized Dirichlet type boundary
condition, their accuracy depending on the regularity of the exact solution on Ω̄. Then
the techniques of effectively solving the resulting algebraic equation are presented, and
the performances of the schemes are demonstrated by several numerical examples.
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1. Introduction

The fractional Laplacian ∆β/2 is the generator of the β -stable Lévy process, in which
the random displacements executed by jumpers are able to walk to neighboring or near-
by sites, and also perform excursions to remote sites by way of Lévy flights [4, 23, 24].
The distribution of the jump length of β -stable Lévy process obeys the isotropic power-law
measure |x |−n−β , where n is the dimension of the space. The extremely long jumps of the
process make its second and higher order moments divergent, sometimes being referred to
as a shortcoming when it is applied to physical model in which one expects regular behav-
ior of moments [29]. The natural idea to damp the extremely long jumps is to introduce
a small damping parameter λ to the distribution of jump lengths, i.e., e−λ|x ||x |−n−β . With
small λ, for short time, it displays the dynamics of Lévy process, while for sufficiently long
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time the dynamics will transit slowly from superdiffusion to normal diffusion. The genera-
tor of the tempered Lévy process is the tempered fractional Laplacian (∆+λ)β/2 [9]. The
tempered fractional Laplacian equation governs the probability distribution function of the
position of the particles.

This paper focuses on developing the finite difference schemes for the tempered frac-
tional Laplacian equation

¨

−(∆+λ)β/2u(x) = f (x), x ∈ Ω,
u(x) = g(x), x ∈ R\Ω,

(1.1)

where β ∈ (0,2), λ≥ 0, Ω = (a, b), and

(∆+λ)β/2u(x) := −cβ

∫

R

u(x)− u(y)

eλ|x−y||x − y|1+β d y (1.2)

with

cβ =







βΓ(
1+β

2
)

21−βπ1/2Γ(1−β/2) for λ= 0 or β = 1,
Γ( 1

2
)

2π
1
2 |Γ(−β)|

for λ > 0 and β 6= 1.
(1.3)

Note that the integral in (1.2) must be regarded as the principal value integral when β ∈
[1,2), but an improper one is enough when β ∈ (0,1). Model (1.1) corresponds to the one-
dimensional case of the initial and boundary value problem in Eq. (49) recently proposed
in [9], and its well posedness is discussed in [30]. Obviously, when λ = 0, (1.2) reduces
to the fractional Laplacian [24]

(∆)β/2u(x) :=−cβ P.V.

∫

R

u(x)− u(y)

|x − y|1+β d y. (1.4)

It is well known that for the proper classes of functions that decay quickly enough at
infinity, the fractional Laplacian can be rewritten as the combination of the left and right
Riemann-Liouville fractional derivatives −∞D

β
x u(x) and x D

β
∞u(x) (the so-called Riesz frac-

tional derivative) [28], i.e.,

−(∆)β/2u(x) =
−∞D

β
x u(x)+ x D

β
∞u(x)

2 cos(βπ/2)
, β 6= 1. (1.5)

The similar result also holds for the tempered fractional Laplacian. In fact, letting u(x) ∈
Hβ (R) and F [u(x)](ω) :=

∫

R
u(x)e−i xωd x be its Fourier transform, we have [30, Propo-

sitions 2.1 and 2.2]

F [(∆+λ)β/2 u(x)](ω)

=(−1)⌊β⌋
�

λβ −
�

λ2 + |ω|2
� β

2 cos

�

β arctan

� |ω|
λ

���

F [u(x)](ω), β 6= 1, (1.6)


