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Abstract. This paper considers the semi-algebraic split feasibility problem (SASFP), i.e.,

the split feasibility problem defined by polynomials. It is more than a special case of

the split feasibility problem (SFP) or the multiple-sets split feasibility problem (MSFP),

since the solution set could be nonconvex or empty. We first establish the semi-definite

relaxation for the SASFP, then discuss on the relationship of feasibility between the

SASFP and its SDP relaxation, especially focus on infeasibility. Finally, some numerical

experiments for different cases are implemented, and the corresponding results are

reported.
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1. Introduction

The split feasibility problem (SFP) and the multiple-sets split feasibility problem (MSF-

P) are useful models for many different practice problems. They arose from the fields of

image reconstruction, signal processing and intensity-modulated radiation therapy, and so

on (see, e.g., [2–4, 6], etc), as a unified model. In 1994, the SFP was first introduced by

Censor and Elfving [4] to model phase retrieval problems. Later in 2005, a generalized

model, i.e., the multiple-sets split feasibility problem (the MSFP) was proposed by Censor

et al in [5].

The SFP is to find x∗ ∈ C such that Ax∗ ∈ Q, where A is an m by n real matrix, and

C and Q are nonempty closed convex sets in Rn and Rm, respectively. Here, Rd denotes

d-dimensional Euclidean space. The MSFP is to find a vector x∗ satisfying

x∗ ∈
r
⋂

i=1

Ci, such that Ax∗ ∈
t
⋂

j=1

Q j ,
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where A is an m× n real matrix, Ci ⊆ R
n, i = 1, · · · , r and Q j ⊆ R

m, j = 1, · · · , t are

nonempty closed convex sets. If t = r = 1, then the MSFP reduces to the SFP. Also, if we

take C :=
r
⋂

i=1

Ci and Q :=
t
⋂

j=1

Q j, then the SFP is actually an MSFP.

In decades of years, projection-type methods have been widely studied for solving the

SFP and MSFP (see e.g. [2, 3, 5–10, 15, 19, 20, 23], etc). Some of these methods need to

compute projections onto the convex sets C and Q, or Ci and Q j; some need to compute

projections onto half space containing the corresponding set; some have fixed iteration

step; while some have self-adaptive iteration step. Among them, the CQ algorithm is

most typical, and many other methods are actually variants and modifications based on it.

However, convergence of these projection-type methods requires all the sets C , Q in the

SFP, and Ci and Q j in the MSFP are convex. However, it is well-known that many problems

from practice are nonconvex. Thus we need to study on methods for solving the nonconvex

SFP and MSFP.

It is known that a closed semialgebraic set is subset of Rn defined by a finite sequence

of polynomial equations and inequalities, or any finite union of such sets (see e.g. [12,13]).

In this paper, we focus on the case that the SFP problem is defined by semi-algebraic

sets:

let C and Q be nonempty sets defined as

C :=
�

x ∈ Rn| fi(x)≥ 0, i = 1, · · · , r
	

, Q :=
¦

y ∈ Rm| g j(y)≥ 0, j = 1, · · · , t
©

,

where fi(x), g j(y), i = 1, · · · , r, j = 1, · · · , t are multivariate polynomials. We are to find

x∗ ∈ C such that Ax∗ ∈Q, where A is an m by n real matrix.

Note that this problem is defined by semi-algebraic sets, so we call it semi-algebraic split

feasibility problem (the SASFP, in short). This kind of problem is more than a special case of

the SFP or the MSFP (with the sets Ci := {x ∈ Rn| fi(x)≥ 0} and Q j := {y ∈ Rm| g j(y)≥
0}), because the sets C , Q, Ci and Q j may or may not be convex in this kind of problems.

Notations. Through out this paper, the symbol N stands for the set of nonnegative

integers, andR for the set of real numbers. For any s ∈ R , ⌈s⌉ denotes the smallest integer

no smaller than s. For x ∈ Rn, x i denotes the i-th component of x . When an n-dimensional

vector y is indexed by an integer vector α ∈ N n , yα denotes the entry of y whose index

is α, and we also denote |α|= α1 + · · ·+αn. For x ∈ Rn, xα denotes x
α1

1 · · · x
αn
n .

The rest of this paper is organized as follows: in Section 2, we establish the semi-

definite relaxation for the SASFP; then in Section 3, we study on the relationship between

the SASFP and its SDP relaxation, especially focus on infeasibility. In Section 4, some

preliminary numerical experiments are executed, and the computing results are reported.

Finally, in Section 5, some conclusions are stated.

2. Semidefinite relaxation of the semi-algebraic split feasibility problem

In this section, we are to establish semi-definite relaxation (called SDP relaxation, in

short) for the above SASFP. The lifted technique in [13] is applied here.


