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Abstract. In this paper, we investigate a priori and a posteriori error estimates of fully
discrete H1-Galerkin mixed finite element methods for parabolic optimal control prob-
lems. The state variables and co-state variables are approximated by the lowest order
Raviart-Thomas mixed finite element and linear finite element, and the control vari-
able is approximated by piecewise constant functions. The time discretization of the
state and co-state are based on finite difference methods. First, we derive a priori error
estimates for the control variable, the state variables and the adjoint state variables.
Second, by use of energy approach, we derive a posteriori error estimates for optimal
control problems, assuming that only the underlying mesh is static. A numerical exam-
ple is presented to verify the theoretical results on a priori error estimates.
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1. Introduction

Finite element method is the most widely used numerical method in computing optimal
control problems, the literature on this topic is huge, it is impossible to even give a very
brief review here. For the studies about a priori error estimates, superconvergence and a
posteriori error estimates of finite element approximations for optimal control problems,
see [2, 3, 7, 11, 15, 16, 19, 20, 22, 23, 31, 32] for elliptic optimal control problems and [12,
14,18,21,24–26] for parabolic optimal control problems.

However, the mixed finite element method is much more important for a certain class
of optimal control problems, which contains the gradient of the state variable in the ob-
jective functional. For example, in the flow control problem, the gradient stands for Dracy
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velocity and it is an important physics variable, or, in the temperature control problem,
large temperature gradients during cooling or heating may lead to its destruction. Chen
et al. have done some works on a priori error estimates and superconvergence properties
of standard mixed finite element methods for optimal control problems, see, for exam-
ple, [5, 6, 8, 13]. In [5, 6], Chen used the postprocessing projection operator, which was
defined by Meyer and Rösch (see [22]) to prove a quadratic superconvergence of the con-
trol by mixed finite element methods. In [8], Chen used the average L2 projection operator
and the superconvergence properties of mixed finite element methods for elliptic problems

to derive the superconvergence of the control. However, the convergence order is h
3
2 since

the analysis was restricted by the low regularity of the control. In [13], we developed a
mixed discontinuous finite element method for linear parabolic optimal control problems,
and derived a priori and a posteriori error estimates.

In this paper, we shall investigate a priori and a posteriori error estimates of H1-
Galerkin mixed finite element method for parabolic optimal control problems. The pro-
posed method was first introduced to discuss a priori error estimates for linear parabolic
and parabolic integro-differential equations [27,28]. A notable advantage of this approach
is that the method not only overcomes the inf-sup condition but the approximating finite
element spaces are also allowed to be of different polynomial degree. Notice that using
this method, we can derive two approximations for the gradient of the primal state vari-
able y, one is the numerical approximation solution ppph, the other is the derivative of the
approximation solution yh.

We consider the following linear parabolic optimal control problems for the state vari-
ables ppp, y, and the control u with control constraint:
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(1.1a)

yt(x , t) + divppp(x , t) +βββ(x) · ∇y(x , t) + c(x)y(x , t)

= f (x , t) + u(x , t), x ∈ Ω, t ∈ J , (1.1b)

ppp(x , t) = −A(x)∇y(x , t), x ∈ Ω, t ∈ J , (1.1c)

y(x , t) = 0, x ∈ ∂Ω, t ∈ J , (1.1d)

y(x , 0) = y0(x), x ∈ Ω, (1.1e)

where Ω ⊂ R2 is a polygonal domain, J = (0, T]. Let K be a closed convex set in U =

L2(J ; L2(Ω)), f , yd ∈ L2(J ; L2(Ω)), pppd ∈ L2(J ; (L2(Ω))2), y0 ∈ H1(Ω), βββ ∈ (W 1,∞(Ω))2

and 0 < c ∈ W 1,∞(Ω). We assume that the coefficient matrix A(x) = (ai j(x))2×2 ∈
W 1,∞(Ω̄;R2×2) is a symmetric 2 × 2-matrix and there are constants c1, c2 > 0 satisfying
for any vector X ∈ R2, c1‖X‖

2
R2 ≤ XtAX≤ c2‖X‖

2
R2 . K is a set defined by

K =
n

u ∈ U : u(x , t)≥ 0, a.e. in Ω× J
o

. (1.2)

We also assume that the following coercivity condition holds:

c −
1

2
∇ ·βββ ≥ a0 > 0.


