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Abstract. This paper is concerned with numerical approximation of elliptic interface
problems via week Galerkin (WG) finite element method. This method allows the us-
age of totally discontinuous functions in approximation space and preserves the energy
conservation law. In the implementation, the weak partial derivatives and the weak
functions are approximated by polynomials with various degrees of freedom. The accu-
racy and the computational complexity of the corresponding WG scheme is significantly
impacted by the selection of such polynomials. This paper presents an optimal combina-
tion for the polynomial spaces that minimize the number of unknowns in the numerical
scheme without compromising the accuracy of the numerical approximation. Moreover,
the new WG algorithm allows the use of finite element partitions consisting of general
polytopal meshes and can be easily generalized to high orders. Optimal order error
estimates in both H1 and L2 norms are established for the present WG finite element
solutions.
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1. Introduction

The physical world is replete with examples of free surfaces, material interface and
moving boundaries. It is the case when two distinct materials or fluids with different con-
ductivities or densities or diffusions are involved. Mathematical modeling of such problems
often lead to differential equations with discontinuous coefficients and singular sources.
This class of problems is commonly called interface problems. Elliptic interface problems
have a variety of applications in many scientific and engineering disciplines, including fluid
dynamics [23], materials science [42] and biological systems [10].

Owing to its mathematical complexity and essential importance in a number of applica-
tion areas, the study of interface problems has evolved into a well defined field in applied
and computational mathematics. The past few decades have witnessed intensive research
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activity in interface problems. Finite element method (FEM) is an another class of impor-
tant approaches for interface problems and a wide variety of FEM approaches have been
proposed in the literature. There are two major classes of FEM depending on the choice
of the discretization, namely, interface-fitted FEMs and unfitted FEMs. In fitted FEMs, the
discretization is made in such a way that the grid line is either follow the actual interface
or an approximation of the smooth interface. In unfitted FEMs, the discretization is inde-
pendent of the location of the interface. We first give a brief account of the development
of the finite element methods for elliptic interface problems. One of the first finite element
methods treating elliptic interface problem has been studied by Babuška in [3]. Since then,
elliptic interface problems have attracted extensive effort in the FEM community as well
(e.g., [5,6,8,9,12,14,16]; and reference therein for fitted FEM). The numerical solution for
elliptic interface problems by means of unfitted finite element methods are investigated by
several authors in [4,5,19,25,30]. However, in this type of methods, mesh generation and
refinement can be a technically demanding and computationally time consuming process.
To avoid the complicated mesh generation process, immersed FEMs have been proposed
to allow the interface to cut through elements so that simple structured Cartesian meshes
can be employed. This renders immersed FEMs great popularity in solving a variety of
interface problems, such as elliptic interface problem [13, 17, 21, 24, 28], elasticity inter-
face problems [18], to name only a few. In fact, immersed FEMs can be regarded as the
Galerkin formulations of finite difference based interface schemes. It is not surprised that
key ideas of many immersed FEMs actually come from the corresponding finite-difference
based interface schemes. For a more detailed discussion on finite difference methods for
interface problem, we refer to [2, 20, 27]. Rigorous convergence analysis of most other
finite difference based elliptic interface schemes is not available yet. In general, it is quite
difficult to analyze the convergence of finite difference based interface schemes because
conventional techniques used in Galerkin formulations are not applicable for collocation
schemes.

The objective of the present work is to propose and analyze weak Galerkin finite ele-
ment method for elliptic interface problems. The weak Galerkin finite element methods
(WG-FEM for short) introduced by [38] refers to the numerical techniques for partial dif-
ferential equations where the differential operators (e.g., gradient, divergence, curl, Lapla-
cian) are approximated by weak forms. Like the DG methods, WG-FEM makes use of
discontinuous functions in the finite element procedure which endows WG-FEM with high
flexibility to deal with geometric complexities and boundary conditions. Unlike DG meth-
ods, WG-FEM enforces only weak continuity of variables naturally through well defined
discrete differential operators. Therefore, weak Galerkin methods avoid pending parame-
ters resulted from the excessive flexibility given to individual elements. As a consequence,
WG-FEM are absolutely stable once properly constructed. In [38], a weak Galerkin method
was introduced and analyzed for second order elliptic equations based on a discrete weak

gradient arising from local RT ( [37]) or BDM ( [7]) elements. Due to the use of the RT and
BDM elements, the weak Galerkin finite element formulation of [38] was limited to classi-
cal finite element partitions of triangles (d = 2) and tetrahedra (d = 3). A computational
study of the weak Galerkin method for second-order elliptic equations has been carried out


