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Abstract. Numerical computation plays an important role in the study of differential
equations with time-delay, because a simple and explicit analytic solution is usually un
available. Time-stepping methods based on discretizing the temporal derivative with
some step-size ∆t are the main tools for this task. To get accurate numerical solutions,
in many cases it is necessary to require ∆t < τ and this will be a rather unwelcome
restriction when τ, the quantity of time-delay, is small. In this paper, we propose a
method for a class of time-delay problems, which is completely meshless. The idea
lies in representing the solution by its Laplace inverse transform along a carefully de-
signed contour in the complex plane and then approximating the contour integral by
the Filon-Clenshaw-Curtis (FCC) quadrature in a few fast growing subintervals. The
computations of the solution for all time points of interest are naturally parallelizable
and for each time point the implementations of the FCC quadrature in all subintervals
are also parallelizable. For each time point and each subinterval, the FCC quadrature
can be implemented by fast Fourier transform. Numerical results are given to check the
efficiency of the proposed method.
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1. Introduction

Delay differential equations (DDEs) arise from various applications, like biology [27],
control of dynamic systems [5, 21], circuit engineering [32] and many others. A DDE
differs from an ordinary differential equation (ODE) in that it depends not only on the

∗Corresponding author. Email addresses: wushulin_ylp@163.com (S. L. Wu), chengming_huang@hotmail.com

(C. M. Huang)

http://www.global-sci.org/nmtma 92 c©2018 Global-Science Press



Meshless and Parallel-in-Time Method for Delay Equations 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−4

−3

−2

−1

0

1

2

3

4

tn

u
n

Implicit Euler

 

 

∆t = 10−2

∆t = 5 × 10−3

∆t = 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8

tn

u
n

Trapezoidal Rule

 

 

∆t = 10−2

∆t = 5 × 10−3

∆t = 10−3

Figure 1: For DDE (1.1) with τ = 0.05, the approximation of the numerical solutions generated by the
implicit Euler method (left) and the trapezoidal rule (right) to the exact solution, the cosine function
u(t) = cos( π

2τ
t).

solution at a present stage but also on the solution at some past stages. While the the-
oretical properties of DDEs have been investigated deeply and widely in the past, there
is little experience with numerical methods for solving these equations, particularly with
parallel computational methods. Existing numerical methods for DDEs mainly rely on dis-
cretizing the temporal derivatives with some step-size ∆t by finite difference formula and
then advancing the discrete solutions step by step. For this issue, we refer the interested
reader to [3,4,13,14,34] and references therein. A serious limitation of the time-stepping
methods is that, in many cases the step-size has to be less than the quantity of time-delay,
i.e., ∆t < τ. To illustrate this, we consider the following DDE:

u′(t) +
π

2τ
u(t −τ) = 0, u(t) = cos

� π
2τ

t

�
, for t ≤ 0, (1.1)

for which the exact solution is the cosine function u(t) = cos
� π

2τ

�
. Let τ = 0.05. Then,

using the implicit Euler method and the trapezoidal rule, we get the numerical solutions
for different step-sizes ∆t as shown in Fig. 1. These results imply that for DDEs a small
step-size is really necessary to get accurate numerical solutions when τ is small.

Parallel methods are also studied for DDEs in the past few years. Among these, we men-
tion [11,17,33] for the study of classical waveform relaxation methods and [22,28–30] for
the study of the Schwarz waveform relaxation methods. (The parallelism of the former is
based on system decoupling, while for the latter the parallelism is based on domain de-
composition.) These methods are iterative and the convergence rates of iterations usually
deteriorate as the mesh parameters become small (except a coarse grid correction is used
after each iteration [20,25,26]). What make matters worse is that these methods can not
be directly used to compute the solution of DDEs, because they are defined at the contin-
uous level, while in practice we still need to rely on time-stepping methods to construct
discrete (Schwarz) waveform relaxation methods.

The goal of this paper is to propose a meshless and highly parallelizable method for
solving the following representative model problem

∂tu(x, t)−∆u(x, t) + au(x, t −τ) = f (x, t), (x, t) ∈ Ω× (0, T ), (1.2)


