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Abstract. In this work we introduce a new unconditionally convergent explicit Tree-
Grid Method for solving stochastic control problems with one space and one time
dimension or equivalently, the corresponding Hamilton-Jacobi-Bellman equation. We
prove the convergence of the method and outline the relationships to other numerical
methods. The case of vanishing diffusion is treated by introducing an artificial diffusion
term. We illustrate the superiority of our method to the standardly used implicit finite
difference method on two numerical examples from finance.
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1. Introduction

In this work we are interested in solving stochastic control problems (SCP) numerically.
Such problems can be represented by so called Hamilton-Jacobi-Bellman (HJB) equations,
and arise in many applications in physics, economics, or finance. This article is divided into
five main sections. In this first introductory section, we define the stochastic control prob-
lem and HJB equation and discuss the most widely used numerical methods. In the Section
2, we derive the new Tree-Grid Method–the main result of this paper. The convergence of
this method is proven in Section 3. In Section 4, we test the performance of the method
on two problems from finance. We compare the results with the ones from the standardly
used implicit finite-difference method. Finally, Section 5 presents the conclusion.

1.1. Problem formulation

We are concerned with searching for the value function V (s, t) of the following general

stochastic control problem (SCP):
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dSt = µ
�
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�

d t +σ(St , t,θ(St , t))dWt , (1.1b)

0< t < T, s ∈ R, (1.1c)

where s is state variable and t is time. Here, Θ̄ is space of all suitable control functions
from R× [0, T] to a set Θ. For our purpose, we will suppose Θ to be discrete. If this is not
the case, we can easily achieve this property by its discretization. We also suppose that the
functions r, f ,µ,σ, VT are chosen suitably. For example, we demand Lipschitz continuity
of µ,σ:

∃K > 0 : ∀t ∈ [0, T], θ ∈Θ, s1, s2 ∈ R :
�

�µ(s1, t,θ)−µ(s2, t,θ)
�

�+
�

�σ(s1, t,θ)−σ(s2, t,θ)
�

� ≤ K |s1 − s2|.

For a detailed analysis of suitability of coefficient and control functions we reffer to some
classic stochastic control literature e.g. [14, 20]. Now following Bellman’s principle, the
dynamic programming equation holds:
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where 0 ≤ t j < t j+1 ≤ T are some time-points and Θ̄t j
is a set of control functions from

Θ̄ restricted to the R× [t j , t j+1) domain. Using this Eq. (1.2), it can be shown [20, 21],
that solving the SCP (1.1a), (1.1b) is equivalent to solving the so-called Hamilton-Jacobi-
Bellman (HJB) equation:
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�

= 0, (1.3a)

V (s, T ) = VT (s), (1.3b)

0< t < T, s ∈ R, (1.3c)

where σ(·), µ(·), r(·), f (·) are functions of s, t,θ . We should note that the maximum op-
erator in (1.1a) and (1.3a) can be replaced by minimum, (supremum, infimum) operator
and the whole following analysis will hold analogously. Another possible generalization
is the use of both infimum and supremum in so called stochastic differential games and
corresponding Hamilton-Jacobi-Bellman-Isaac equation [16]. Use of even more general


