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Abstract. In this paper, we consider an optimal control problem governed by Stokes

equations with H1-norm state constraint. The control problem is approximated by spec-

tral method, which provides very accurate approximation with a relatively small number

of unknowns. Choosing appropriate basis functions leads to discrete system with sparse

matrices. We first present the optimality conditions of the exact and the discrete opti-

mal control systems, then derive both a priori and a posteriori error estimates. Finally,

an illustrative numerical experiment indicates that the proposed method is competitive,

and the estimator can indicate the errors very well.
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1. Introduction

Flow control problems can be met frequently in many engineering applications; for

instance, leading the velocity to a desired one, minimizing turbulence in a flow, enhanc-

ing or deterring mixing and designing the optimal shapes to minimize drag in flows for

many industrial devices such as aircraft wings, automobile shapes and boats, etc. Fast

and efficient numerical methods play an important role in successful applications of flow

control problems. Finite element method has been widely used in solving control prob-

lems. One can find a systematic introduction to the theoretical analysis and finite ele-

ment approximation for control problems including flow control problems in, for exam-

ple, [16, 20, 23, 24, 27, 28]. However, most of these results focus on control-constrained

cases. Recently, control problems with state constraints have been widely discussed. On

the theoretical aspects, we refer to [2, 14], and have to mention the works of Casas (see,

e.g., [6, 7]). In respect of numerical approximation, many studies have been carried out
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to examine finite element analysis for this class of control problems, including point-wise

constraint, integral constraint, and L2-norm constraint (see, e.g., [1,12,19,21,22,25,31]).

To compute control problems with state constraints, many numerical strategies are pro-

posed. [3] takes an augmented Lagrangian method to solve state and control constrained

problems. Primal-dual active set algorithm is used to solve state constrained problem-

s in [4]. A semi-smooth Newton method is adopted for approximating the regularized

point-wise state-constrained optimal control problems in [15]. In [17], the optimal control

problem is reformulated to a constrained minimization problem involving only the state,

which is characterized by a fourth order variational inequality, then a mixed variational

scheme is proposed.

Employing global polynomials as the trial functions, the spectral method has been suc-

cessfully applied in numerical solutions of PDEs, especially in the field of computational

fluid dynamics (see, for example, [8–10, 30], and the references therein). Generally, the

solutions to the optimal control problems have limited regularity due to, e.g., the con-

straints, which leads to the lose of spectral accuracy. However, spectral method enjoys

the great superiorities of high-precision and fast convergence rate when the approximated

solutions have higher regularity, which is vital to efficient approximation of optimal con-

trol problems. Therefore, the spectral method has gained increasing popularity in solving

control problems governed by PDEs in the past several years. In [13], spectral method is

used to approximate the elliptic control problems with integral control constraint, both a

priori and a posteriori error estimates are derived, and numerical tests confirm the effi-

ciency of the proposed method. In [32], a priori error estimates are derived for control

problems with integral state constraint. Generally, control problems with state constraints

are far more complicated to analyze than control-constrained ones. To our best knowledge,

there has been a lack of discussion on the spectral approximation of flow control problem-

s with H1-norm state constraint, though this class of control problems can be applied in

many practical considerations. In fact, for many casting products made by pouring molten

metals into mold cavities, the velocity and its derivative of the molten metals should be

constrained to ensure the quality of the products. Moreover, it is better to restrict the ve-

locity and its derivative of the flow that passing through the corner. In these cases, we can

try to use the control models with H1-norm constraints for flow velocity.

LetΩ⊂ R2 be a rectangular domain, C denotes a general positive constant independent

of N , the order of the spectral approximation. We shortly describe the structure of our

paper as follows: In Section 2, a priori error estimates are derived for Galerkin spectral

approximation of the flow control problem. Then, a posteriori error estimates are proposed

in Section 3. Finally, an illustrative numerical experiment is presented in Section 4.

2. A priori error estimates

In this section, the optimality conditions are derived, and the spectral approximation

of the control problem is presented. Then a priori error estimates are established. Let

UUU = L2(Ω)2, YYY = H1
0(Ω)

2, Q = L2
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¦
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∫
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. We consider the


