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Abstract. We study the residual diffusion phenomenon in chaotic advection com-

putationally via adaptive orthogonal basis. The chaotic advection is generated by a
class of time periodic cellular flows arising in modeling transition to turbulence in

Rayleigh-Bénard experiments. The residual diffusion refers to the non-zero effective

(homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic
mixing of the streamlines. In this limit, the solutions of the advection-diffusion

equation develop sharp gradients, and demand a large number of Fourier modes to
resolve, rendering computation expensive. We construct adaptive orthogonal basis

(training) with built-in sharp gradient structures from fully resolved spectral solu-

tions at few sampled molecular diffusivities. This is done by taking snapshots of
solutions in time, and performing singular value decomposition of the matrix con-

sisting of these snapshots as column vectors. The singular values decay rapidly and

allow us to extract a small percentage of left singular vectors corresponding to the
top singular values as adaptive basis vectors. The trained orthogonal adaptive basis

makes possible low cost computation of the effective diffusivities at smaller molecu-
lar diffusivities (testing). The testing errors decrease as the training occurs at smaller

molecular diffusivities. We make use of the Poincaré map of the advection-diffusion

equation to bypass long time simulation and gain accuracy in computing effective
diffusivity and learning adaptive basis. We observe a non-monotone relationship

between residual diffusivity and the amount of chaos in the advection, though the

overall trend is that sufficient chaos leads to higher residual diffusivity.
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1. Introduction

Diffusion enhancement in fluid advection has been studied for nearly a century,

dating back to the pioneering work of Taylor [13] in 1921. It is a fundamental problem

to characterize and quantify the large scale effective diffusion (denoted by DE) in fluid

flows containing complex and turbulent streamlines. Much progress has been made

based on the passive scalar model [9]:

Tt + (v ·D)T = D0∆T, (1.1)

where T is a scalar function (e.g., temperature or concentration), D0 > 0 is a constant

(the so called molecular diffusion), v (x, t) is a prescribed incompressible velocity field,

D and ∆ are the spatial gradient and Laplacian operators.

When the flow is steady, periodic and two dimensional, precise asymptotics of DE

are known. A prototypical example is the steady cellular flow [4, 5], v = (−Hy,Hx),
H = sinx sin y, see also [11, 14, 15] for its application in effective speeds of front

propagation. The asymptotics of the effective diffusion along any unit direction in the

cellular flow obeys the square root law in the advection dominated regime: DE =
O(

√
D0) ≫ D0 as D0 ↓ 0, [5, 6]. This is intuitively due to the ordered streamlines

of the steady cellular flows where enhanced transport occurs along saddle to saddle

connections and a diffusing particle escapes closed streamlines by hopping from cell

to cell. However, if the streamlines are fully chaotic (well-mixed), the enhancement

can follow a very different law. The simplest such example is the time periodic cellular

flow:

v = (cos(y), cos(x)) + θ cos(t)(sin(y), sin(x)), θ ∈ (0, 1]. (1.2)

The first term of (1.2) is a steady cellular flow with a π/4 rotation, and the second

term is a time periodic perturbation that introduces an increasing amount of disorder

in the flow trajectories as θ becomes larger. At θ = 1, it is fully mixing, and empiri-

cally sub-diffusive [17]. The flow (1.2) has served as a model of chaotic advection for

Rayleigh-Bénard experiment [3]. Numerical simulations [2, 10] suggest that at θ = 1,

the effective diffusion along the x-axis, DE
11 = O(1) as D0 ↓ 0, the so called residual

diffusion arises. As D0 ↓ 0, the solutions develop sharp gradients, and render accurate

computation costly, especially if one is interested in DE parametrized by θ.

Let us recall the formula for effective diffusivity tensor [2]:

DE
ij = D0 (δij + 〈Dwi ·Dwj〉) , (1.3)

where w is a mean zero space-time periodic vector solution of:

wt + (v ·Dw)−D0∆w = −v, (1.4)

and the bracket denotes space-time average over the periods. The solution of (1.4) is

unique by the Fredholm alternative. The correction to D0 is positive definite in (1.3).

In this paper, we shall construct adaptive basis functions to handle the singular

solutions of (1.4) at small D0. First, we compute w by the spectral method, because
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