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Abstract. In this paper, we introduce a nonconforming Nitsche’s extended finite
element method (NXFEM) for elliptic interface problems on unfitted triangulation
elements. The solution on each side of the interface is separately expanded in the
standard nonconforming piecewise linear polynomials with the edge averages as
degrees of freedom. The jump conditions on the interface and the discontinuities
on the cut edges (the segment of edges cut by the interface) are weakly enforced
by the Nitsche’s approach. In the method, the harmonic weighted fluxes are used
and the extra stabilization terms on the interface edges and cut edges are added to
guarantee the stability and the well conditioning. We prove that the convergence
order of the errors in energy and L2 norms are optimal. Moreover, the errors are
independent of the position of the interface relative to the mesh and the ratio of
the discontinuous coefficients. Furthermore, we prove that the condition number of
the system matrix is independent of the interface position. Numerical examples are
given to confirm the theoretical results.
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1. Introduction

In this paper we consider the following elliptic interface problem:
−∇ · (a(x)∇u) = f in Ω1 ∪ Ω2,

[u] = gD, [(a(x)∇u) · n] = gN on Γ,

u = 0 on ∂Ω,

(1.1)
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Figure 1: A sample domain Ω and an unfitted mesh.

where Ω = Ω1 ∪Γ∪Ω2 is a bounded and convex domain in R2, Ω1 and Ω2 are two sub-
domains of Ω separated by the interface Γ = ∂Ω1 ∩ ∂Ω2 (see Fig. 1 for an illustration).
[v] = v|Ω1 − v|Ω2 denotes the jump of v across the interface Γ, and n is the unit normal
vector to Γ pointing from Ω1 to Ω2. We assume that a(x) = ai for x ∈ Ωi with constants
ai > 0, i = 1, 2, and denote by amin = mini=1,2{ai}, amax = maxi=1,2{ai}. We further
assume that the interface Γ is C2-smooth.

The problem (1.1) is often occurred in material sciences and fluid dynamics which
involves two or more distinct materials or fluids with different densities, conductivities
or permeabilities. Much attention has been paid to the numerical methods for this
problem in recent decades. We refer to the immersed boundary element method [1],
the finite difference methods (see, for example, the immersed interface method [2]
and the ghost fluid method [3]) and the finite element methods (see, for example,
the multiscale finite element method [4], the immersed finite element method [5–10],
the ghost fluid method [44], the splitting collocation method [43], the weak Galerkin
finite element method [42, 45], the unfitted finite element method [11–16, 18] and
the mortar element method [19]). In this paper, we focus on the numerical methods
related to the finite element implementations.

Since the global regularity of the solution is low due to the nature of the inter-
face and discontinuity of the coefficients in the equation, the performance of the stan-
dard finite element method is not very well unless the interface coincides with mesh
lines. One strategy to solve the interface problems with accurate approximation is
the interface-fitted grid methods where the discontinuity is directly captured by the
mesh (see [19–24] and the references therein). However, it is difficult and time con-
suming to generate a body fitted grid for the interface problems with the complicated
interface. In particular, for the moving interface problems, such a difficulty is more
severe because of the expensive remeshing at each time step to maintain a good mesh.
Therefore, various unfitted grid methods for the problem (1.1) have been proposed in
the literature, where the interface can be arbitrarily located with respect to the mesh


