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Abstract. Korteweg-de Vries equation is a nonlinear evolutionary partial differential
equation that is of third order in space. For the approximation to this equation with
the initial and boundary value conditions using the finite difference method, the
difficulty is how to construct matched finite difference schemes at all the inner grid
points. In this paper, two finite difference schemes are constructed for the problem.
The accuracy is second-order in time and first-order in space. The first scheme is a
two-level nonlinear implicit finite difference scheme and the second one is a three-
level linearized finite difference scheme. The Browder fixed point theorem is used
to prove the existence of the nonlinear implicit finite difference scheme. The con-
servation, boundedness, stability, convergence of these schemes are discussed and
analyzed by the energy method together with other techniques. The two-level non-
linear finite difference scheme is proved to be unconditionally convergent and the
three-level linearized one is proved to be conditionally convergent. Some numerical
examples illustrate the efficiency of the proposed finite difference schemes.
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1. Introduction

In recent years, with most complex phenomenon appearing, nonlinear evolutionary
equations [7, 23, 24] have become more and more important tool to describe them.
Especially, Korteweg-de Vries (KdV) type equation has been widely applied in physics,
mathematics, biophysics, which originated from modeling the shallow water surface
height of solitary dispersive waves. In 1877, Boussinesq firstly discovered the KdV
equation. After about twenty years, Korteweg and his PhD student Gustav de Vries
mathematically reintroduced the KdV equation [5,14].
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The simplest form of KdV equation is as follows:

ut + εuux + µuxxx = 0,

where ε, µ are given constants.
There are many works on KdV equation. Kamruzzaman used the Kudryashov

method to find the exact travelling wave solutions transmutable to the solitary wave
solutions of the ubiquitous unsteady Korteweg-de Vries equation and applied the
exp(−φ(ξ))-expansion method to construct the exact travelling wave solutions for non-
linear evolution equations [12, 13]. About the numerical approximation of the one-
dimensional simplified KdV equation, many researchers have obtained abundant results
by finite difference method, spectral method and finite volume method. For example,
Vliegenthart discussed some explicit finite difference schemes for solving the initial-
value problem of KdV equation and presented dissipative difference schemes which had
the effect of eliminating high wave number components. However, these schemes were
conditionally stable [22]. The authors of [15] proposed a Legendre pseudo-spectral
method for the KdV equation with nonperiodic boundary condition and analyzed the
convergence for linear-KdV equation. Pazoto got a one order fully-implicit numerical
scheme based on this asymptotic behavior of the solution of the generalized Korteweg-
de Vries equation (GKdV with p = 4) and got convergece in L4 norm [16]. Dougalis
constructed a fully discrete Galerkin method with high order of accuracy for the numer-
ical solution of the periodic initial-value problem for KdV equation. But they needed
certain mild restriction on the space mesh length and the time step [9]. Alisamii et
al. introduced a hybridized discontinuous Galerkin method to deal with nonlinear KdV
type equations. As for the time stepping, they used the backward difference formula.
However, there was no analysis of convergence in this research [2]. Yan proposed three
conservative finite volume element schemes based on the discrete variational deriva-
tive method [26], but there was no analysis of convergence. Winebery developed an
implicit-stepping scheme for KdV equation in temporal direction and spectral meth-
ods in space [25]. However, there was a restriction on the size of the time step when
they applied predictor-corrector method to retain the full accuracy of the scheme. In
addition, Bosco presented a finite difference method for the integration of the KdV
equation with periodic boundary conditions on irregular grid. The method is shown to
be superconvergent, which only took place on grids with an odd number of points per
period [10]. Zhu constructed a difference scheme with a higher-order discrete invari-
ant for the periodic KdV equation [27]. Djidjeli et al. proposed two numerical methods
for the solution of the third- and fifth-order KdV equations. The first method was de-
rived using central differences to replace the space derivative with predictor-corrector
time-stepping and the second method by linearizing the implicit corrector scheme in
which the solution was then found by solving a linear algebraic system at each time
step. They proved the stability of these schemes [8]. And Qu and Wang had presented
an alternating segment explicit-implicit difference scheme and proved the stability of
this scheme by the analysis of linearization procedure [17]. Nonetheless, there were
lack of the convergence analysis.


