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Abstract. In recent years, alternating direction method of multipliers (ADMM) and
its variants are popular for the extensive use in image processing and statistical
learning. A variant of ADMM: symmetric ADMM, which updates the Lagrange mul-
tiplier twice in one iteration, is always faster whenever it converges. In this paper,
combined with Nesterov’s accelerating strategy, an accelerated symmetric ADMM is
proposed. We prove its O( 1

k2 ) convergence rate under strongly convex condition.
For the general situation, an accelerated method with a restart rule is proposed.
Some preliminary numerical experiments show the efficiency of our algorithms.
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1. Introduction

In this paper, we consider the following convex minimization problem with a linear
constrain and a separable objective function:{

min
x,y

f(x) + g(y)

s.t. Ax+By = c,
(1.1)

where A, B are linear maps and f , g are convex functions. Problem (1.1) has found
numerous applications in statistic and image processing. The augment Lagrangian
formulation of (1.1) is

max
λ

min
x,y

f(x) + g(y)− 〈λ,Ax+By − c〉+ ρ

2
‖Ax+By − c‖2, (1.2)

where λ is the dual variable and ρ is a penalty parameter. Solving (1.1) via (1.2)
is exactly the augmented Lagrangian method by Hestenes [16] and Powell [22]. For
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the separable structure in object function in above class problem, alternating direction
method of the multipliers (ADMM) algorithm [9], one variant of ALM, is preferred. It
minimizes (1.2) on x, y alternatively, then updates the dual variable λ. Readers can
refer to the review paper [2] for some applications of ADMM in statistics and machine
learning fields.

The iterative scheme of ADMM on (1.1) is
xk+1 = argminxf(x)− 〈λk, Ax〉+

ρ

2
‖Ax+Byk − c‖2,

yk+1 = argminyg(y)− 〈λk, By〉+
ρ

2
‖Axk+1 +By − c‖2,

λk+1 = λk − ρ(Axk+1 +Byk+1 − c),

(1.3)

where x, y and Lagrange multiplier λ are updated in each iteration. ADMM is shown
to be equivalent to the Douglas-Rachford splitting method (DRSM) [5] on the dual
problem of (1.1). The convergence of ADMM under general condition is guaranteed
for two block situation, and a proof can be found in [2]. The above algorithm can be
easily extended to solve linear constrained minimization with three or more separated
block objective function, while in these cases, its convergence is no longer guaranteed
under general conditions [4].

Apply another famous splitting method: Peaceman-Rachford splitting method
(PRSM) [21] on the dual problem of (1.1), we get a variation of ADMM and its it-
erative scheme is

xk+1 = argminxf(x)− 〈λk, Ax〉+
ρ

2
‖Ax+Byk − c‖2,

λk+
1
2 = λk − ρ(Axk+1 +Byk − c),

yk+1 = argminyg(y)− 〈λk+
1
2 , By〉+ ρ

2
‖Axk+1 +By − c‖2,

λk+1 = λk+
1
2 − ρ(Axk+1 +Byk+1 − c).

(1.4)

This algorithm is called symmetric ADMM (sADMM) for it updates λ twice in one iter-
ation.

Different from ADMM, symmtric ADMM requires more to ensure its conver-
gence [12], but it shows a faster convergence than ADMM in numerical computing.
In [12], a contractive step size a ∈ (0, 1) was introduced to the dual variable updating
step to ensure the convergence of the algorithm

xk+1 = argminxf(x)− 〈λk, Ax〉+
ρ

2
‖Ax+Byk − c‖2,

λk+
1
2 = λk − aρ(Axk+1 +Byk − c),

yk+1 = argminyg(y)− 〈λk+
1
2 , By〉+ ρ

2
‖Axk+1 +By − c‖2,

λk+1 = λk+
1
2 − aρ(Axk+1 +Byk+1 − c).

(1.5)

ADMM and sADMM are the first-order algorithms. In [12, 14, 15], their O( 1k ) conver-
gences were established. In practice, they can converge slowly to reach a high accuracy,


