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Abstract. By reviewing the primal-dual hybrid gradient algorithm (PDHG) pro-
posed by He, You and Yuan (SIAM J. Image Sci., 7(4) (2014), pp. 2526–2537),
in this paper we introduce four improved schemes for solving a class of saddle-point
problems. Convergence properties of the proposed algorithms are ensured based on
weak assumptions, where none of the objective functions are assumed to be strongly
convex but the step-sizes in the primal-dual updates are more flexible than the pre-
vious. By making use of variational analysis, the global convergence and sublinear
convergence rate in the ergodic/nonergodic sense are established, and the numer-
ical efficiency of our algorithms is verified by testing an image deblurring problem
compared with several existing algorithms.
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1. Introduction

Let R be the set of real numbers, Rm×n be the space of m × n dimensional real
matrices, and Rn be the space of n dimensional real column vectors equipped with
inner product 〈·, ·〉 and Euclidean norm ‖z‖2 =

√
〈z, z〉 for any z ∈ Rn. Consider the

following general saddle-point problem

min
xi∈Xi

max
yj∈Yj

F (x, y) :=

p∑
i=1

fi(xi)−
p∑
i=1

p∑
j=1

〈yj , Aixi〉 −
p∑
j=1

gj(yj), (1.1)
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where x = (xT1 , x
T
2 , · · · , xTp )T, y = (yT1 , y

T
2 , · · · , yTp )T are grouped variables; p ≥ 1

is any positive integer; Xi ⊂ Rmi , Yj ⊂ Rn are structured and closed convex sets;
fi(xi) : Rmi → R, gj(yj) : Rn → R are proper closed convex functions but possibly
nonsmooth; and all Ai ∈ Rn×mi are given matrices. Throughout the discussions, the
solution set of the problem (1.1) is assumed to be nonempty.

Minimization problems in the form of (1.1) arises in many possible applications,
such as the 2D image denoising [12] and machine learning [3, Problem (2)]. In the
past several years, a number of first-order algorithms had been developed for solving
the problem (1.1) with case p = 1. For instance, Zhu and Chan [13] firstly proposed the
primal-dual hybrid gradient algorithm (PDHG), whose iteration alternates between the
primal and dual formulations, for solving total variation (TV) minimizations with ap-
plications in 2D image processing. Later, this PDHG was extended by Esser et al. [6] to
solve a broader class of convex optimization models, and the modified version of PDHG
was analyzed to have a similarly good empirical convergence rate for TV minimization
problems. In 2011, Chambolle and Pock [4] showed an accelerated version of PDHG
for non-smooth convex optimization problems with known saddle-point structure. In
particular, their algorithm had O(1/t) convergence rate for non-smooth problems, and
O(1/t2) convergence rate for problems where either the primal or dual objective is
uniformly convex. Here t denotes the iteration number. To better understand how to
choose the step-sizes of the primal-dual updates, He et al. [9] revisited convergence of
PDHG by an extremely simple example that it is not necessarily convergent when the
step-sizes are fixed as tiny constants. The modified PDHG in [9], that is,

xk+1 = arg min
x∈X

{
F (x, yk) +

r

2

∥∥x− xk∥∥2

2

}
,

yk+1 = arg max
y∈Y

{
F (xk+1, y)− s

2

∥∥y − yk∥∥2

2

}
,

(1.2)

is indeed globally convergent under the following conditions:

• (A1) f(x) is strongly convex with the modulus τ > 0, i.e., there exists a positive
constant τ such that for any ξ ∈ ∂f(x), it holds

f(x̃)− f(x) ≥ 〈x̃− x, ξ〉+
τ

2
‖x̃− x‖22 , ∀x, x̃ ∈ X ;

• (A2) For given matrix A and τ > 0, the parameter s in (1.2) satisfies s > ρ(ATA)
τ

where ρ(·) denotes the spectral radius of a matrix.

Clearly, (A1)-(A2) are strong and not always satisfied for some cases in real appli-
cations. For example, the TV regularized linear inversion problem, widely used as a
model of salt-pepper noisy image deblurring [12], is of the following form

min
x∈X

{
1

2
‖Kx− b‖1 + λ‖Ax‖2,1

}
.


