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Abstract

A structured perturbation analysis of the least squares problem is considered in this

paper. The new error bound proves to be sharper than that for general perturbations.

We apply the new error bound to study sensitivity of changing the knots for curve

fitting of interest rate term structure by cubic spline. Numerical experiments are given

to illustrate the sharpness of this bound.
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1. Introduction

The perturbation analysis for the full rank least squares (LS) problem

min‖r‖2 =min‖b− Ax‖2, (1.1)

where A∈ Rm×n,x ∈ Rn, r ∈ Rm and m ≥ n, has been well established, see [3–5,9] and the

references therein. Consider the perturbed LS problem of the form

min‖r+∆r‖2 =min‖b− (A+∆A)(x+∆x)‖2, (1.2)

and let εA be a small number satisfying ‖∆A‖F ≤ εA‖A‖F . It is shown in [1] that

‖∆x‖2
‖x‖2

≤ εA

�

κ(A) + κ(A)2
‖r‖2
‖A‖F‖x‖2

�

+ O (ε2
A), (1.3)

‖∆r‖2
‖r‖2

≤ εA

�

κ(A)+ ‖A‖F
‖x‖2
‖r‖2

�

+ O (ε2
A), (1.4)

where κ(A) = ‖A+‖2‖A‖F , A+ is referred to as the Moore-Penrose inverse of A.

However, in some situations the perturbation matrix ∆A assumes some special struc-

ture, for which the bounds (1.3) and (1.4) that hold general perturbation matrices may

be weak. In this paper, we carry out perturbation analysis for a LS problem which arises
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in the curve fitting for term structure of interest rates [6]. For example, if we partition A

as A = [A1 A2], the perturbation in the problem we consider occurs only in A2. For this

structured perturbation, we obtain new error bounds which are sharper than (1.3) and

(1.4).

This paper is organized as follows. In Section 2 we introduce the curve fitting for term

structure of interest rate. In Section 3 we present a structured perturbation analysis for the

LS problem and illustrate the improvement of our results over the classical results (1.3)

and (1.4). In Section 4 we report the results of the numerical experiments and comparisons

with the general theory.

2. Interest rate curve fitting

Here we recall the method of bond pricing introduced in [6]. First, one need to obtain

the cash flows on the bond to be priced. In particular, let us first assume that we are dealing

with a straight default-free, fixed-coupon bond, so that the value of cash flows paid by the

bond are known in advance, that is, on the date when pricing is performed. In general,

there are two parameters that are needed to fully describe the cash flows on a bond. The

first is the maturity date of the bond, on which the principal or face amount of the bond is

paid and the bond retired. The second parameter needed to describe a bond is the coupon

rate.

Then, one needs to apply some kind of discounted value type of formula to obtain the

current value of the bond. Given that the cash flows are known with certainty payment

dates, only the time-value needs to be accounted for, using the present value rule, which

can be written as the following relationship

P̄t = Ct f (t),

where P̄t is the present value of the cash flow Ct received at date t and f (t) is the price

at date 0 (today) of $1 to be received on date t. f (t) is known as the discount factor.

The theoretical price of a default-free, fixed-coupon bond can be calculated as the present

value of the cash flows received by the owner of the bond using the appropriate discount

factors as follows:

P̄ =
∑

j

Ct j
f (t j),

where P̄ is the theoretical price of a bond which has cash flow Ct j
at time t j .

In practice, it is very often to assume that the discount factor function f (t) has some

shape. In [7,8], McCulloch assumes that f (t) is a smooth cubic spline curve on [0, T] with

k segments (k ≥ 2), where the knots are sorted in increasing order u0 = 0 < u1 < u2 <

· · ·< uk−1 < T = uk. Then f (t) has the form

f (t) =







f1(t) = a0 + a1t + a2 t2 + a3 t3, t ∈ [0,u1],

f2(t) = a4 + a5t + a6 t2 + a7 t3, t ∈ (u1,u2],

· · · · · ·
fk(t) = a4k−4 + a4k−3t + a4k−2t2 + a4k−1t3, t ∈ (uk−1, T],

(2.1)


