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Abstract

A real n × n symmetric matrix X = (x i j)n×n is called a bisymmetric matrix if

x i j = xn+1− j,n+1−i . Based on the projection theorem, the canonical correlation de-

composition and the generalized singular value decomposition, a method useful for

finding the least-squares solutions of the matrix equation AT XA= B over bisymmetric

matrices is proposed. The expression of the least-squares solutions is given. Moreover,

in the corresponding solution set, the optimal approximate solution to a given matrix

is also derived. A numerical algorithm for finding the optimal approximate solution is

also described.
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1. Introduction

Let Rn×m denote the set of all real n×m matrices, SRn×n (ASRn×n) the set of all real sym-

metric (anti-symmetric) matrices, BSRn×n the set of all real bisymmetric matrices, ORn×n

the set of all real orthogonal matrices, In the identity matrix in Rn×n, Sn the antitone iden-

tity matrix in Rn×n, namely, Sn = (en, en−1, . . . , e1), where ei denotes the ith column of In.

‖.‖ stands for the Frobenius norm. A ∗ B represents the Hadamard product of two n× m

matrices A and B, that is, A∗ B = (ai j bi j), 1≤ i ≤ n, 1≤ j ≤ m.

Matrix equation is one of the important study fields of linear algebra. The matrix

equation

AT XA= B (1.1)

comes from an inverse problem of vibration theory. Dai and Lancaster [1] have studied the

least-squares problem of (1.1). The expression of the least-squares solution of the matrix

equation (1.1) over symmetric matrices, semidefinite symmetric matrices and bisymmetric

matrices were given in [1] and [5], which used the singular value decomposition (SVD)
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and the canonical correlation decomposition (CCD). Xie [3] considered the least-squares

solutions of the matrix equation (1.1) over semidefinite (but not be symmetric) matrices

and its optimal approximate solutions. Based on the results in [5], which gave the expres-

sion of least-squares solutions of the matrix equation (1.1) over bisymmetric matrices, we

will study the problem of its optimal approximation. That is to say we have two problems

to solve in this paper:

• Problem I: For given matrices A ∈ Rn×m, B ∈ SRm×m, find a matrix eX ∈ BSRn×n,

such that

‖AT eX A− B‖ = min
X∈BSRn×n

‖AT XA− B‖.

• Problem II: For given X ∗ ∈ SRn×n, find a matrix bX ∈ SE such that

‖bX − X ∗‖= min
X∈SE

‖X − X ∗‖,

where SE denotes the set of solutions of Problem I.

Liao [5] gave the expression of the solutions of Problem I by applying the canonical

correlation decomposition (CCD). But because a general nonsingular matrix in CCD does

not satisfy the orthogonal invariance of the Frobenius norm, we cannot obtain the solution

of Problem II through the solutions of Problem I. In order to solve this problem, we can

use the given solution X0 and the projection theorem to transform Problem I to another

problem which is to find bisymmetric solutions of a consistent equation. Then by apply-

ing the generalized singular value decomposition (GSVD) we can obtain the bisymmetric

solutions of the consistent equation and its optimal approximation.

In Problem I, if the matrix B is not symmetric, then we can use

‖AT XA− B‖2 = ‖AT XA− (S(B) + R(B))‖2
= ‖AT XA− S(B)‖2 + ‖R(B)‖2,

where S(B) = 1

2
(B + BT ) ∈ SRm×m, R(B) = 1

2
(B − BT ) ∈ ASRm×m. Therefore, the matrix

equation (1.1) and the matrix equation AT XA= S(B) have the same least-squares bisym-

metric solutions. Therefore, we can assume the matrix B in Problem I belongs to SRm×m,

and assume the matrix X ∗ in Problem II satisfies X ∗ ∈ SRn×n for the same reason.

2. Several lemmas and CCD, GSVD

Lemma 2.1. ([6]) When n= 2k,

BSRn×n =

(�
M HSk

SkH SkMSk

������M , H ∈ SRn×n

)
,

and when n= 2k+ 1,

BSRn×n =
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