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Abstract. Compressible miscible displacement of one fluid by another in porous media is
modelled by a nonlinear parabolic system. A finite element procedure is introduced to ap-
proximate the concentration of one fluid and the pressure of the mixture. The concentration
is treated by a Galerkin method while the pressure is treated by a parabolic mixed finite
element method. The effect of dispersion, which is neglected in [1], is considered. Optimal
order estimates in L

2 are derived for the errors in the approximate solutions.
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1 Introduction

Miscible displacement of one compressible fluid by another in a porous medium is modeled by a
nonlinear parabolic system [1, 4]

d(c)
∂p

∂t
+ ∇ · u = d(c)

∂p

∂t
−∇ · (a(c)∇p) = q, (1a)

φ(x)
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c −∇ · (D(u)∇c) = (ĉ − c)q, (1b)

where c denotes the volumetric concentration of one of the two components of the fluid (c = c1 =
1 − c2), and p denotes its pressure. The coefficients a(c), b(c), d(c), φ(x) (porosity of the rock)
are assumed bounded below positively and a(c), b(c), d(c) ∈ C1; q is the external volumetric
flow rate; ĉ is the concentration of the external flow, which is specified at points where injection
(q > 0) takes place, or assumed to be equal to c at production points; u is the Darcy velocity of
the fluid satisfying

u = −a(c)∇p, (2)

D(u) combines the effects of molecular diffusion and dispersion [5], defined by

D = φ{dmI + |u|(dlE(u) + dtE
⊥(u))} (3)
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where E(u) = [ukul/|u|
2] is an 2×2 matrix representing orthogonal projection along the velocity

vector and E⊥(u) = I − E(u) is its orthogonal complement. D(u) is a positive definite matrix
since the effect of molecular diffusion is much greater than that of dispersion. In addition, the
reservoir Ω will be taken to be of unit thickness and be identified with a bounded domain in R2.

We shall also assume that no flow occurs across the boundary:

u · ν = 0 on ∂Ω, (4a)

(D∇c − cu) · ν = 0 on ∂Ω, (4b)

where ν is the outer normal to ∂Ω. The initial conditions are

p(x, 0) = p0(x) x ∈ Ω, (5a)

c(x, 0) = c0(x) x ∈ Ω. (5b)

Douglas [1] introduced a mixed finite element procedure for the same problem while disper-
sion was neglected such that D = φ(x)dmI. Cheng [8] introduced a Galerkin procedure with
dispersion on rectangle element and derived optimal error estimates. Wang and Cheng [9] consid-
ered the Galerkin method with dispersion to another similar problem on quasi-regular element,
and derived nearly optimal error estimates. In this paper, a mixed finite element procedure on
quasi-regular element is introduced with dispersion so that D = D(u) (see (3)). The analysis of
the procedure is based on [1] while different test functions are selected and two projections are
introduced to derive the optimal error estimates in L2.

2 Formulation of the mixed finite element procedure

It is well known that physical transport dominates the diffusive effects in realistic examples
of compressible miscible displacement. Thus it is more important to obtain good approximate
velocities than to achieve high accuracy in pressure. This motivates the use of mixed method in
the calculation of the pressure and velocity.

Firstly, the weak form for the parabolic system (1a), (1b) and (2) is given by

(

φ
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, z

)

+
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∂p
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)

+ (u · ∇c, z) + (D(u)∇c,∇z) = ((ĉ − c)q, z) z ∈ H1(Ω), t ∈ J, (6a)

(

d(c)
∂p

∂t
, w

)

+ (∇ · u, w) = (q, w) w ∈ L2(Ω), t ∈ J, (6b)

(α(c)u, v) − (∇ · v, p) = 0 v ∈ V, t ∈ J, (6c)

where V = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω}, α(c) = a(c)−1 and J = (0, T ].

Let h = (hc, hp), where hc and hp are positive. Let Mh denote a standard finite element space
whose elements diameters are bounded by hc. Assume that Mh is associated with a quasi-regular
polygonalization of Ω and piecewise-polynomial functions of some fixed degree greater or equal
to l. As a result, all standard inverse relations hold on Mh, which will be used frequently in our
analysis. Then let Vh × Wh be a Raviart-Thomas [6] space of index at least k associated with
quasi-regular triangulation or quadrilateralization (or a mixture of the two) of Ω such that the
elements diameters are bounded by hp. If the approximations for the pressure, concentration
and velocity are denoted by ch ∈ Mh, ph ∈ Wh and uh ∈ Vh respectively, then they are defined


