Least-Squares Solutions of the Equation AX = B Over Anti-Hermitian Generalized Hamiltonian Matrices[†]

Zhongzhi Zhang^{1,*}and Changrong Liu²

 ¹ Department of Mathematics, Dongguan University of Technology, GuangDong Dongguan 523000, China.
² Institute of Mathematics, Hunan University, Changsha 410082, China.

Received October 14, 2003; Accepted (in revised version) August 30, 2004

Abstract. Upon using the denotative theorem of anti-Hermitian generalized Hamiltonian matrices, we solve effectively the least-squares problem min ||AX - B|| over anti-Hermitian generalized Hamiltonian matrices. We derive some necessary and sufficient conditions for solvability of the problem and an expression for general solution of the matrix equation AX = B. In addition, we also obtain the expression for the solution of a relevant optimal approximate problem.

Key words: Least-squares problem; anti-Hermitian generalized Hamiltonian matrices; optimal approximation.

AMS subject classifications: 65F15, 65F20, 65D99

1 Introduction

A typical least-squares problem is: Given a set S of matrices and given matrices X and B, find all matrices $A \in S$ for which $||AX - B|| = \min_{G \in S} ||GX - B||$.

We get different least-squares problems according to different sets S. The least-squares problems and relevant constrained matrix equation problems have been widely used in particle physics and geology^[1], inverse problems of vibration theory^[2,3], inverse Sturm-Liouville problem^[4], control theory and multidimensional approximation^[5,6]. In recent years a series of good results have been made for this problem^[2-14]. For example, J. G. Sun considered the problem for the case of real symmetric matrices in [10]. K. G. Woodgate studied the problem for the case of symmetric positive semidefinite matrices in [3]. D. X. Xie studied the problem for the case of anti-symmetric matrices, nonnegative definite matrices (may be nonsymmetric), as well as bisymmetric matrices in [11-13]. In this paper, we discuss the problem for a set S which is defined in the following way.

Numer. Math. J. Chinese Univ. (English Ser.)

^{*}Correspondence to: Zhongzhi Zhang, Department of Mathematics, Dongguan University of Technology, Guang-Dong Dongguan 523000, China. Email: zhangzz@mail.dgut.edu.cn †This research was supported by the NSF of China under grant number 10571047.

http://www.global-sci.org/nm

Definition 1.1. Assume that $J \in \mathbb{R}^{n \times n}$ is a given orthogonal anti-symmetric matrix. $A \in \mathbb{C}^{n \times n}$ is said to be an anti-Hermitian generalized Hamiltonian matrix if

$$A^H = -A$$
 and $JAJ = A^H$

where A^H stands for the conjugate transformation of matrix A. The set of all *n*-by-*n* anti-Hermitian generalized Hamiltonian matrices is denoted by $AHHC^{n \times n}$, i.e.,

$$AHHC^{n \times n} = \{ A \in C^{n \times n} | A^H = -A \text{ and } JAJ = A^H \}.$$

It is clear that the set $AHHC^{n \times n}$ is a linear subspace of $C^{n \times n}$ and depends on matrix J. Throughout the paper, we always assume that the matrix J is fixed. In addition, by the properties of the matrix J, we have $J^2 = -I_n$. Consequently, n must be an even integer.

In this paper, we study the following two problems.

Problem I Given $X, B \in C^{n \times m}$, find a matrix $A \in AHHC^{n \times n}$ such that

$$\min f(A) = \min \|AX - B\|$$

Problem II Given $A^* \in C^{n \times n}$, find a matrix $\hat{A} \in S_{X,B}$ such that

$$||A^* - \hat{A}|| = \min_{\forall A \in S_{X,B}} ||A^* - A||$$

where $S_{X,B}$ is the set of solutions of Problem I and ||A|| stands for the Frobenius norm of matrix A.

In this paper, we derive an expression of the solution for Problems I and II. We prove the necessary and sufficient conditions of the solvability for the matrix equation AX = B in $AHHC^{n \times n}$.

Let us introduce some notations that will be used in this paper. Let $\mathrm{HC}^{n \times n}(\mathrm{AHC}^{n \times n})$ be the set of all $n \times n$ Hermitian matrices (anti-Hermitian matrices). The notation $UC^{n \times n}$ stands for the set of all $n \times n$ unitary matrices. We denote the Moore-Penrose generalized inverse of a matrix A by A^+ , the identity matrix of order n by I_n . For $A, B \in C^{n \times m}$, we use $\langle A, B \rangle = \mathrm{tr}(B^H A)$ to define the inner product of matrices A and B. The induced matrix norm is the so called Frobenius norm, i.e.,

$$||A|| = \sqrt{\langle A, A \rangle} = [\operatorname{tr}(A^H A)]^{\frac{1}{2}}.$$

It is clear that $C^{n \times m}$ is a complete inner product space. For $A, B \in C^{n \times m}$, A * B stands for the Hadamard product of A and B.

This paper is organized as follows. In Section 2, we discuss the properties of the $AHHC^{n \times n}$. In Section 3, we derive the expression of the general solution for Problem I, and then establish the necessary and sufficient conditions of the solvability for AX = B in $AHHC^{n \times n}$. In Section 4, we prove the existence and uniqueness of the solution and derive the expression of the solution for Problem II.

2 Characterization of anti-Hermitian generalized Hamiltonian matrices

In this section, we prove the denotative theorem of anti-Hermitian generalized Hamiltonian matrices. Let

$$P_1 = \frac{1}{2}(I+iJ), \quad P_2 = \frac{1}{2}(I-iJ).$$
 (1)