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Abstract. In this paper, we develop Gaussian quadrature formulas for the Hadamard fi-
nite part integrals. In our formulas, the classical orthogonal polynomials such as Legendre
and Chebyshev polynomials are used to approximate the density function f(x) so that the
Gaussian quadrature formulas have degree n − 1. The error estimates of the formulas are
obtained. It is found from the numerical examples that the convergence rate and the accu-
racy of the approximation results are satisfactory. Moreover, the rate and the accuracy can
be improved by choosing appropriate weight functions.
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1 Introduction

The numerical methods for the hypersingular integrals are most frequently encountered in many
problems of mechanics. Particularly, they have been applied to solve the elasticity problems
([1-3]). In this paper,we consider hypersingular integrals of the form

I(t) = f.p.

∫ b

a

f(x)

(x− t)2
w(x)dx, t ∈ (a, b) (1.1)

where f.p. denotes the finite part integral in the sense of Hadamard which is divergent in
the classical sense, and f(x) is a regular function on the interval [a, b] . The integral (1.1) is
of second-order singularity. This type of integrals arises in the mechanics problems and the
numerical methods of partial differential equations and integral equations, which have attracted
considerable attention from researchers (see, for example, [1-8]). In numerical analysis of integrals
arising from partial differential equations the chief difficulties in many cases are not only the loss
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of smoothness of the solution but also (and more crucially) the singularity of the solution. When
smooth function are to be integrated , ordinary numerical methods are adequate, but when
singular functions are to be integrated, the situation would be not reliable and satisfactory.
Hence , it is desirable to have the simple and efficient quadrature formulas for the hypersingular
integrals.

One of efficient methods for evaluating hypersingular integral (1.1) is generalizing the classical
Gaussian quadrature rule. This was first done by Kutt[9] who has developed a set of Gaussian
quadrature formulas. Ioakimidis, Pitta[10], Tsamasphyros and Dimou[11] developed the theorem
of Kutt’s. In the above works, the nodes and weights generally are complex numbers. This can
reduce the precision in the numerical evaluation since I(t) is real-valued. This is because the
imaginary part will be required to cancel out exactly. Hui and Shia[12] have generalized Kutt’s
works to constant real nodes and weights that use classical orthogonal polynomials such as
Legendre and Chebyshev, where the weight function is w(x) = 1 or w(x) =

√
1 − x2. Although

Hui’s method has more precision than that of Kutt’s, it has some issues need to be further
addressed: First the classical Gaussian quadrature formulas in general have degree 2n−1, which
integrate all polynomials up to its degree exactly. But Hui’s formulas do not have any degree
result. Second Hui’s Gaussian quadrature formulas require parameter t not equal to the roots of
orthogonal polynomials that will limit their application in the practical computation. The third
Hui’s method uses a deduction:

if

∫ 1

−1

f(x)

x− t
w(x)dx ≈ g(t), then

d

dt

∫ b

a

f(x)

x− t
w(x)dx ≈ g′(t), (∗)

which is clearly coarse and would cause greater error and it is difficult to give an error estimate.
In this paper, we also use classical orthogonal polynomials such as Legendre and Chebyshev

to establish Gaussian quadrature formulas for Cauchy principal value integrals and then use
them to develop Gaussian quadrature formulas for finite part integrals . Nodes and weights
in our approach are real-valued like Hui’s. However, we avoid directly to use the formula (∗),
but we apply the polynomials (the classical orthogonal polynomials or Taylor expansions) to
approximate the considered functions. Consequently, we can prove that our Gaussian formulas
have degree n − 1 and the formulas do not require the parameter t not equal to the roots
of orthogonal polynomials that is more convenient in practical computations. Moreover the
inaccurate deduction (∗) is not used in our methods and we can establish error estimates for our
Gaussian quadrature formulas and it seems possible that the accuracy of our formulas would be
better than Hui’s.

The paper is organized as follows. In Section 2, we develop Gaussian quadrature formulas for
finite part integrals (1.1). In Section 3, the Gaussian quadrature formulas established in Section
2 are applied to the three concrete cases of weight function: w(x) = 1, w(x) =

√
1 − x2 and

w(x) = 1/
√

1 − x2, and the error estimates of the formulas are given respectively. Finally, we
present the results of the numerical experiments in Section 4.

2 Gaussian quadrature formulas

To simplify the exposition, we will take a = −1, b = 1 in (1.1), but our results are valid in the
more general cases for finite a, b.

Definition 2.1. Suppose that f(x) is a real function defined on [−1, 1]. If the limit

lim
ε→0

(∫ t−ε

−1

f(x)

(x− t)2
dx+

∫ 1

t+ε

f(x)

(x − t)2
dx− 2f(x)

ε

)
(2.1)


