THE MONOTONICITY OF CONVERGENCE RATE FOR MGS METHODS

Wang Yongjun (王永俊)

Abstract In this paper we prove that the asymptotic rate of convergence of the modified Gauss-Seidel method of a non-singular M-matrix is a monotonic function for precondition parameters $0 \leq \alpha_i \leq \frac{1}{2}$, $(i = 1, 2, \cdots, n - 1)$.

Key words Gauss-Seidel method, convergence rate, monotonicity.

AMS(2000) subject classifications 65F10

1 Introduction

Let A be an $n \times n$ matrix with all diagonal entries 1, $-L$ and $-U$ be strictly lower and strictly upper triangular part of A, respectively. Then the Gauss-Seidel splitting of A has the form that $A = (I - L) - U$, where I is the identity matrix of order n. For the convenience of statement, we take the notations as follows:

$$V = \begin{bmatrix}
0 & -a_{12} & 0 & \cdots & 0 \\
0 & 0 & -a_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -a_{n-1,n}
\end{bmatrix}$$

and $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_{n-1})$, $D_\alpha = \text{diag}(\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, 1)$, $S_\alpha = D_\alpha V$, $P_\alpha = I + S_\alpha$, $A_\alpha = P_\alpha A$. Briefly, we denote D_c, S_c, P_c, A_c, etc. for the case $\alpha_i (\forall i)$ all c, respectively.

Consider Gauss-Seidel splitting $A_\alpha \doteq E_\alpha - F_\alpha$. Observably, A_0 is the case of standard Gauss-Seidel splitting of A. Gunawardena et al [1] studied firstly the convergence for A_1 (the Modified Gauss-Seidel method). And then Kohno et al [2] extended to the general case for $0 \leq \alpha \leq 1$.

When A is a non-singular M-matrix, the iterative matrix $T_\alpha = E_\alpha^{-1}F_\alpha$ of Gauss-Seidel splitting for A_α is non-negative, and has the spectral radius $\rho_\alpha = \rho(T_\alpha) < 1$. Gunawardena’s works [1] show that $\rho_1 \leq \rho_0$, and Li’s works [3] show that $\rho_\alpha \leq \rho_0$ for $0 \leq \alpha \leq 1$. In [4], Li shows that $\rho_\alpha \geq \rho_\beta$ for $0 \leq \alpha \leq \beta \leq \varepsilon$, where ε is some vector only relative to matrix A when A is a diagonally dominant non-singular M-matrix, and conjectures that the above statement would be true for $0 \leq \alpha \leq \beta \leq 1$. That is, ρ_α would be a monotonic function when $0 \leq \alpha \leq 1$.

*Received: Mar. 10, 2003.
In this paper, we show Li’s conjecture true for any non-singular M-matrix when $0 \leq \alpha \leq \xi$, (where $\xi \geq \frac{1}{2}$ and only relative to A) without the assumption that A is diagonally dominant.

2 Some Facts and Lemmas

Throughout the rest of this paper, we always suppose that A is a non-singular M-matrix, $0 \leq \alpha \leq \beta \leq 1$, and $M_{\varepsilon} = P_{\varepsilon}^{-1}E_{\varepsilon}$, $N_{\varepsilon} = P_{\varepsilon}^{-1}F_{\varepsilon}$, x_{ε} is a non-negative eigenvector belonging to ρ_{ε} of T_{ε} (where $\varepsilon = \alpha, \beta$). By simple computing, following facts can be obtained:

$$N_{\varepsilon} = (U - S_{\varepsilon}) + S_{\varepsilon}^2 (I - S_{\varepsilon}^2)^{-1} (I - S_{\varepsilon}),$$ (2.1)

$$M_{\varepsilon}^{-1} N_{\varepsilon} = E_{\varepsilon}^{-1} F_{\varepsilon} = T_{\varepsilon} \geq 0,$$ (2.2)

$$F_{\varepsilon} \geq 0.$$ (2.3)

Some lemmas without proof are stated as follows, which can be easily followed from [4][5]:

Lemma 2.1 If $\rho_{\varepsilon} > 0$, $Ax_{\varepsilon} = \frac{1 - \rho_{\varepsilon}}{\rho_{\varepsilon}} N_{\varepsilon}x_{\varepsilon}$, and $A_{\varepsilon}x_{\varepsilon} = \frac{1 - \beta_{\varepsilon}}{\beta_{\varepsilon}} F_{\varepsilon} x_{\varepsilon} \geq 0$.

Lemma 2.2 $T_{\alpha} A^{-1} \geq T_{\beta} A^{-1}$.

Lemma 2.3 $A_{\varepsilon} = P_{\varepsilon} A$ is a non-singular M-matrix.

3 Results

Now, we show our main theorem.

Theorem 3.1 Let A be a non-singular M-matrix, $0 \leq \alpha \leq \beta \leq \xi$, where

$$\xi_i = \frac{1}{1 + \sqrt{1 - a_{i,i+1}a_{i+1,i}}} \quad (0 \leq i < n).$$

Then $\rho_{\alpha} \geq \rho_{\beta}$.

Proof When $\rho_{\beta} = 0$, $\rho_{\alpha} \geq 0 = \rho_{\beta}$, it obvious.

Now suppose that $0 < \rho_{\beta} < 1$.

Let $q_i = \frac{1}{1 - \beta_{\alpha}a_{i,i+1}a_{i+1,i}}$, $Q_{\beta} = \text{diag}(q_1, \cdots, q_{n-1}, 1)$, $s_i = -\beta_{i}a_{i,i+1},$ $(0 \leq i < n)$. Because A is a non-singular M-matrix, $1 > a_{i,i+1}a_{i+1,i}$. So, $\xi_i < 1 \leq q_i,$ $(0 \leq i < n).$ Then

$$(Q_{\beta}A_{\beta} - (I - S_{\beta}))_{i,i+1} = (Q_{\beta}A_{\beta} + S_{\beta})_{i,i+1} = q_i (1 - \beta_{i}) a_{i,i+1} + s_i$$

$$= \frac{(1 - \beta_{i}) a_{i,i+1}}{1 - \beta_{i} a_{i,i+1} a_{i+1,i}} - \beta_{i} a_{i,i+1} = q_i a_{i,i+1} \cdot (1 - 2\beta_{i} + \beta_{i}^2 a_{i,i+1} a_{i+1,i}).$$

If $a_{i,i+1}a_{i+1,i} = 0$, then $1 - 2\beta_{i} \geq 1 - 2\xi_{i} = 0$. So, $(I - S_{\beta})_{i,i+1} \geq (Q_{\beta}A_{\beta})_{i,i+1}$ because of $a_{i,i+1} \leq 0$. While $a_{i,i+1}a_{i+1,i} > 0$, we have that

$$1 - 2\beta_{i} + \beta_{i}^2 a_{i,i+1}a_{i+1,i} = \left(1 - \frac{\beta_{i}}{1 - \sqrt{1 - a_{i,i+1}a_{i+1,i}}} - \beta_{i}\right) \cdot \left(1 - \frac{\beta_{i}}{1 + \sqrt{1 - a_{i,i+1}a_{i+1,i}}} - \beta_{i}\right)$$

$$= \left(1 - \frac{\beta_{i}}{1 - \sqrt{1 - a_{i,i+1}a_{i+1,i}}} - \beta_{i}\right) \cdot (\xi_{i} - \beta_{i}).$$