
English NUMERICAL MATHEMATICS Vol.14, No.3

Series A Journal of Chinese Universities Aug. 2005

FOURIER REGULARIZATION FOR DETERMINING

SURFACE HEAT FLUX FROM INTERIOR

OBSERVATION BASED ON A SIDEWAYS PARABOLIC

EQUATION∗
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Abstract In this paper we consider a non-standard inverse heat conduction problem

for determining surface heat flux from an interior observation which appears in some

applied subjects. This problem is ill-posed in the sense that the solution (if it exists)

does not depend continuously on the data. A Fourier method is applied to formulate a

regularized approximation solution, and some sharp error estimates are also given.
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1 Introduction and preliminary

In several engineering contexts, it is sometimes necessary to determine the surface temper-

ature and heat flux in a body from a measured temperature history at a fixed location inside the

body [1]. For the standard case, i.e., for the following sideways heat equation:⎧⎪⎨
⎪⎩

ut = uxx, x > 0, t > 0,

u(x, 0) = 0, x ≥ 0,

u(1, t) = g(t), t ≥ 0, u(x, t)|x→∞ bounded,

(1)

the determination of surface temperature has been discussed by many authors by some different

methods[2-6]. However, as it is said in [1]: “the heat flux is more difficult to calculate accurately
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than the surface temperature” and the theoretical results are few [2], [7]. In this paper we

consider the following non-standard inverse heat conduction problem in the quarter plane which

appears in some applied subjects [8], [9]:⎧⎨
⎩

ut − ux = uxx, x > 0, t > 0,
u(x, 0) = 0, x ≥ 0,
u(1, t) = g(t). t ≥ 0, u(x, t)|x→∞ bounded,

(2)

and we now only pay attention to the determining of heat flux distribution on the interval

x ∈ [0, 1).

As we consider problem (2) in L2(R) with respect to variable t, we extend u(x, ·), g(t) :=

u(1, t), f(t) := u(0, t) and other functions appearing in the paper be zero for t < 0. As a solution

of problem (2) we understand a function u(x, t) satisfying (2) in the classical sense, and for every

fixed x ∈ [0,∞), the temperature functions u(x, ·) and heat flux ux(x, ·) belong to L2(R). We

assume that there exists an a priori bound for f(t) := u(0, t) :

‖f‖p ≤ E, for some p ≥ 0, (3)

where

‖f‖p :=
(∫ ∞

−∞
(1 + ξ2)p|f̂(ξ)|2dξ

) 1
2

, (4)

and

f̂(ξ) =
1√
2π

∫ ∞

−∞
e−iξtf(t)dt (5)

is the Fourier transform of function f(t). Let g(t) and gδ(t) be the exact and measured data at

x = 1 of the solution u(x, t) respectively, which satisfy

‖gδ − g‖ ≤ δ, (6)

where ‖ · ‖ denotes the norm of L2(R).

It is easy to see by taking the Fourier transform for variable t in (2) that in the frequency

domain the solution u(x, t) of problem (2), if it exists, will satisfy the following problem:⎧⎨
⎩

ûxx(x, ξ) + ûx(x, ξ) − iξû(x, ξ) = 0, x > 0, ξ ∈ R,
û(1, ξ) = ĝ(ξ), ξ ∈ R,
û|x→∞, bounded.

(7)

The characteristic equation of the ordinary differential equation in (7) is

λ2 + λ − iξ = 0

and hence the roots of this equation are λ =
−1 ±√

1 + i4ξ

2
, where

√
1 + i4ξ denotes the prin-

cipal square root of 1 + i4ξ and√
1 + i4ξ = 4

√
1 + 16ξ2ei 1

2 arg(1+i4ξ). (8)


