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FOURIER REGULARIZATION FOR DETERMINING
SURFACE HEAT FLUX FROM INTERIOR,
OBSERVATION BASED ON A SIDEWAYS PARABOLIC
EQUATION*

Fu Chuli(f§i®]%%) Xiong Xiangtuan(fER]HA]) Li Hongfang(Z=HLTF)

Abstract In this paper we consider a non-standard inverse heat conduction problem
for determining surface heat flux from an interior observation which appears in some
applied subjects. This problem is ill-posed in the sense that the solution (if it exists)
does not depend continuously on the data. A Fourier method is applied to formulate a
reqularized approximation solution, and some sharp error estimates are also given.
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1 Introduction and preliminary
In several engineering contexts, it is sometimes necessary to determine the surface temper-

ature and heat flux in a body from a measured temperature history at a fixed location inside the

body [1]. For the standard case, i.e., for the following sideways heat equation:

Ut = Ugy, z>0,t>0,
W(r,0)=0,  2>0, 1)
u(1,t) = g(t), t>0, u(®,t)ls—oc bounded,

the determination of surface temperature has been discussed by many authors by some different

methods[2-6]. However, as it is said in [1]: “the heat flux is more difficult to calculate accurately
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than the surface temperature” and the theoretical results are few [2], [7]. In this paper we
consider the following non-standard inverse heat conduction problem in the quarter plane which

appears in some applied subjects [8], [9]:

Ut — Uy = Ugy, x >0,1>0,
u(z,0) =0, x >0, (2)
u(l,t) =g(t). t>0, wu(x,t)|z—0 bounded,

and we now only pay attention to the determining of heat flux distribution on the interval
x €10,1).

As we consider problem (2) in L?(R) with respect to variable ¢, we extend u(z,-), g(t) :=
u(1,t), f(t) := u(0,t) and other functions appearing in the paper be zero for ¢t < 0. As a solution
of problem (2) we understand a function u(z,t) satisfying (2) in the classical sense, and for every
fixed z € [0, 00), the temperature functions u(z,-) and heat flux u,(z,-) belong to L?(R). We

assume that there exists an a priori bound for f(t) := u(0,¢?) :
Ifllp, < E, for some p >0, (3)

where

-

Ii= ([~ a+eriiora) ()

—0o0

and

i) = \/%—W / Z e f (1)t (5)

is the Fourier transform of function f(t). Let g(¢) and gs(t) be the exact and measured data at

2 = 1 of the solution u(z,t) respectively, which satisfy

llgs — gll <6, (6)

where || - || denotes the norm of L?(R).

It is easy to see by taking the Fourier transform for variable ¢ in (2) that in the frequency

domain the solution u(x,t) of problem (2), if it exists, will satisfy the following problem:

Uy (2,€) + Uy (x, &) —ill(x,&) =0, x>0, €R,
ﬁ(lvg) = g(f)v E € R, (7)

U] 2005 bounded.

The characteristic equation of the ordinary differential equation in (7) is
MNEA—iE=0

—14 T¥idg
2

and hence the roots of this equation are A = , where /1 + i4¢ denotes the prin-

cipal square root of 1 + i4£ and

V1 +i4E = /14 166272 are1+i40) (8)



