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CONVERGENCE OF ONLINE GRADIENT

METHOD WITH A PENALTY

TERM FOR FEEDFORWARD NEURAL

NETWORKS WITH STOCHASTIC INPUTS∗
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Abstract Online gradient algorithm has been widely used as a learning algorithm

for feedforward neural network training. In this paper, we prove a weak convergence

theorem of an online gradient algorithm with a penalty term, assuming that the training

examples are input in a stochastic way. The monotonicity of the error function in the

iteration and the boundedness of the weight are both guaranteed. We also present a

numerical experiment to support our results.
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1 Introduction

Online gradient algorithm (OGM) is commonly used for feedforward neural network (FNN)

training [2,3,5,6]. The training is usually done by iteratively updating of the weights according

to the error signal, which is the negative gradient of a sum-square error function (SSE). However,

by using SSE as the error function sometimes the weight of the network becomes very large and

the generalization performance is poor, even though the network is trained until the error on

the training set is minimized. In order to resolve this problem, a popular choice is to add a

penalty term to the standard error function [1,4,8,9]. When the training samples are trained
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in a fixed order, the effect of the penalty term in controlling the magnitude of the weight is

investigated in [8,10]. However, the usual OGM chooses input ξi from the training samples

{ξi, Oi} in a stochastic order, which is important to help the training procedure to jump off from

local minima. In this paper we shall show that, when input sample ξi is chosen in a specially

stochastic order (cf.[7]), such an online gradient algorithm with a penalty term and stochastic

inputs (POGM-S) is weakly convergent. Besides, the monotonicity of the error function in the

training iteration and the boundedness of the weight are both guaranteed. We also present

a simulation example to illustrate our results established in the paper. Experimental results

indicate that, as well as being beneficial from controlling the magnitude of the weight, POGM-S

makes the generalization performance of the network greatly improved.

For simplicity, a two-layer FNN is considered with N input nodes and one single output

node. Assume that the transfer function σ : R → R is a pre-chosen sigmoid function, and denote

the weight by ω = (w1, · · · , wN )T . Suppose {ξi, Oi}J
i=1 is the given set of training examples.

Our error function with a penalty term has the form (cf.[8])

E(ω) =
1
2

J∑
i=1

(
Oi − σ(ω · ξi)

)2
+

λ

2

J∑
i=1

(ω · ξi)2 ≡
J∑

i=1

[fi(ω · ξi) +
λ

2
(ω · ξi)2], (1.1)

where λ > 0 is the coefficient of the penalty term. Then the gradient function is given by

∇E(ω) =
J∑

i=1

[f
′
i (ω · ξi) + λ(ω · ξi)]ξi. (1.2)

Now we introduce the POGM-S algorithm. Let {ξn1, ξn2, · · · , ξnJ} be a stochastic permutation

of {ξ1, ξ2, · · · , ξJ} in the n-th cycle of the training iteration. Starting from an initial value ω0,

we proceed to refine it iteratively by the following rule

ωnJ+i = ωnJ+i−1 + �n
i ωnJ+i−1, i = 1, 2, · · · , J ; n = 0, 1, · · · , (1.3a)

�n
i ωnJ+i−1 = −ηn[f

′
ni(ω

nJ+i−1 · ξni) + λ(ωnJ+i−1 · ξni)]ξni, (1.3b)

where ηn is the learning rate in the n-th training cycle. For an initial value η0 > 0, ηn changes

after each cycle of training iteration according to

1
ηn

=
1

ηn−1
+ β, n = 1, 2, · · ·, (1.4)

where β > 0 is a constant. The following assumption is imposed throughout the paper.

Assumption 1 There is C > 0 such that for any t ∈ R and 1 ≤ i ≤ J

|fi(t)| ≤ C, |f ′
i (t)| ≤ C, |f ′′

i (t)| ≤ C.


