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MULTILEVEL AUGMENTATION METHODS

FOR SOLVING OPERATOR EQUATIONS∗

Chen Zhongying(���) Wu Bin(� �) Xu Yuesheng (���)

Abstract We introduce multilevel augmentation methods for solving operator equa-
tions based on direct sum decompositions of the range space of the operator and the
solution space of the operator equation and a matrix splitting scheme. We establish a
general setting for the analysis of these methods, showing that the methods yield ap-
proximate solutions of the same convergence order as the best approximation from the
subspace. These augmentation methods allow us to develop fast, accurate and stable
nonconventional numerical algorithms for solving operator equations. In particular, for
second kind equations, special splitting techniques are proposed to develop such algo-
rithms. These algorithms are then applied to solve the linear systems resulting from
matrix compression schemes using wavelet-like functions for solving Fredholm integral
equations of the second kind. For this special case, a complete analysis for computa-
tional complexity and convergence order is presented. Numerical examples are included
to demonstrate the efficiency and accuracy of the methods. In these examples we use
the proposed augmentation method to solve large scale linear systems resulting from
the recently developed wavelet Galerkin methods and fast collocation methods applied
to integral equations of the second kind. Our numerical results confirm that this aug-
mentation method is particularly efficient for solving large scale linear systems induced
from wavelet compression schemes.
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1 Introduction

Developing stable, efficient and fast numerical algorithms for solving operator equations

including differential equations and integral equations is a main focus of research in numerical

analysis and scientific computation. The development of such algorithms is particularly impor-

tant for large scale computation. Solving an operator equation normally requires three steps of

processing. The first step, at the level of approximation theory, is to choose appropriate sub-

spaces and their suitable bases. The second step is to discretize the operator equations using

these bases and to analyze convergence properties of the approximate solutions. This step of

processing which results in a discrete linear system is a main task considered at the level of

numerical solutions of operator equations. The third step, at the level of numerical linear al-

gebra, is to design an efficient solver for the discrete linear system resulting from the second

step. The ultimate goal is to efficiently solve the discrete linear system which gives an accurate

approximate solution of the original operator equation. Theoretical consideration and practical

implementation in the numerical solution of operator equations show that these three steps of

processing are closely related. A good way of designing efficient algorithms for the discrete linear

system should be taken into consideration choices of subspaces and their bases, methodologies

of discretization of the operator equations and numerical solvers of the resulting discrete linear

system. The well-known multigrid method (cf., [16, 17]) and the related two-grid method [3,4]

are excellent examples of such algorithms.

A good algorithm for solving operator equations should be convenient for implementing

adaptivity. When a computed approximate solution is confirmed to be not accurate enough,

a local or global subdivision is often made aiming at a solution at a finer level. An efficient

algorithm should be able to update the old computed approximate solution obtaining a new,

more accurate approximate solution, at an additional expense proportional to the net gain in

accuracy, avoiding solving the whole equation at the finer level. In other words, the additional

computational costs to obtain the additional accuracy from a (local or global) subdivision should

be proportional to the dimension of the difference space between the coarse level and the finer

level, not at the expense in the order of the dimension of the finer level space. Presently, to our

best knowledge, existing numerical methods in the literature are not yet able to meet this need.

The research reported in this paper is an attempt to accomplish this goal.

We introduce a multilevel augmentation method for solving operator equations based on

multilevel decompositions of the approximate subspaces, aiming at efficiently solving linear sys-

tems of large scale obtained from discretization of the operator equations. For this purpose,

we require that both the range space of the operator and the solution space of the operator

equation have direct sum decompositions. Our method consists of two steps. In the first step,

we use the direct sum decompositions to discretize the operator equation and result in a linear

system. Reflecting the direct sum decompositions of the subspaces, the coefficient matrix of the


