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Abstract. We consider the elliptic system ∆u=p(|x|)uavb, ∆v=q(|x|)ucvd on Rn (n≥3)
where a, b, c, d are nonnegative constants with max{a,d}≤1, and the functions p and
q are nonnegative, continuous, and the support of min{p(r),q(r)} is not compact. We
establish conditions on p and q, along with the exponents a, b, c, d, which ensure the
existence of a positive entire solution satisfying lim|x|→∞ u(x)= lim|x|→∞ v(x)=∞.
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1 Introduction and main results

In this paper we establish the existence of positive solutions (u,v) to the elliptic system

∆u= p(|x|)uavb,

∆v=q(|x|)ucvd , x∈Rn, (n≥3),
(1.1)

that satisfy

u(x)→∞ and v(x)→∞ as |x|→∞. (1.2)

Such solutions of (1.1) are called entire large solutions. The exponents a,b,c d are nonneg-
ative; the functions p, q are radial (i.e., spherically symmetric), nonnegative, and contin-
uous; and the function m(r)≡min{p(r),q(r)} has noncompact support.
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Although the existence of large solutions to semilinear systems began with [1], the
study of large solutions to the more general competitive systems such as (1.1) started
with Garcı́a-Melián and Rossi [2] where the authors considered the system on a bounded
domain with min{a,d}>1 and unit weights (i.e., p= q=1). For both the subcritical case
(i.e., (a−1)(d−1)> bc) and the critical case (i.e., (a−1)(d−1)= bc) necessary and suffi-
cient conditions were given for the existence of boundary blow-up (or large) solutions.
In addition, they established existence for the subcritical case when the weights are non-
constant, nonradial, and possibly blow up on the boundary with a prescribed asymptotic
behavior. Garcı́a-Melián [3] extended existence of blow-up solutions to the case where
the weights, if unbounded, have prescribed growth rates at the boundary. Mu et al [4] al-
so considered the subcritical case and proved existence when the weights are allowed to
vanish on the boundary. Large solutions of the quasilinear problem where the Laplacian
in (1.1) is replaced with the p−Laplacian have also been studied. (See, e.g., [5, 6]).

All of these results apply only to bounded domains. Here we study the existence of
large solutions on all of Rn (n≥3). Except for special cases (e.g., [7] and [1] where a=d=0),
the only other results known to the author is his work with Mohammed [8] where (1.1)
is studied with unit weights and exponents that are radial functions of x. When applied
to the present case where the exponents are constant, we proved that with unit weights a
postive entire large solution exists if and only if max{a,d}≤1 and (1−a)(1−d)≤ bc ([8]
Corollary 4.6). One consequence of this is, of course, that (1.1), with unit weights, will
not have an entire large solution if min{a,d}>1.

Before stating our results, we note some related problems that remain unsolved. For
a nontrivial system (i.e., bc> 0) with nonconstant nonradial weights, there is no known
existence theorem for entire large solutions, even in the case where a= d=0. Even with
nonconstant radial weights, as considered here, it remains unknown as to whether an en-
tire large solution exists when min{a,d}>1, regardless of the case: subcritical, critical, or
supercritical (i.e., (a−1)(d−1)>bc). In particular, what are the appropriate conditions on
the radial weights to ensure that such a solution exists? As mentioned above, the weights
must be nonconstant in (1.1) since, otherwise, it will have a solution only if max{a,d}≤1.

In order to state our main results we define G and H as follows where P(r)=
∫ r

0 sp(s)ds
and Q(r)=

∫ r
0 sq(s)ds and note some equivalences (See (10) and (11) in [9]).

G(r)≡
∫ r

0
t1−n

∫ t

0
sn−1 p(s)dsdt= r2−n

∫ r

0
tn−3

∫ t

0
sp(s)dsdt= r2−n

∫ r

0
tn−3P(t)dt,

H(r)≡
∫ r

0
t1−n

∫ t

0
sn−1q(s)dsdt= r2−n

∫ r

0
tn−3

∫ t

0
sq(s)dsdt= r2−n

∫ r

0
tn−3Q(t)dt.

Notice also that (See (12) and (13) of [9]).

lim
r→∞

G(r)=∞ if and only if lim
r→∞

P(r)=∞, (1.3)

lim
r→∞

H(r)=∞ if and only if lim
r→∞

Q(r)=∞. (1.4)


